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PREFACE

Soft computing is a new branch of scientific computing, which, unlike hard
computing, can deal with uncertain, imprecise and inexact data. This field is
currently expanding and finds increasing application in modem-life problems and
systems. The three constituents of soft computing are fuzzy-logic-based computing,
neurocomputing and genetic algorithms. Fuzzy logic provides the capability of
approximate and commonsense reasoning, neurocomputing offers learning and
function approximation capabilities, and genetic algorithms (GAs) provide a
methodology for systematic random search optimization which is based on the
mechanics of natural selection and natural genetics. In hybrid soft-computing
systems these three capabilities are combined in various complementary and
synergetic ways.

This book provides a set of selected contributions dealing with important
issues, techniques and applications of sofi-computing in systems and control
technology. It is divided in the following four parts:

Part I: Neural networks in system identification and control

Part Ik: Fuzzy and neurofuzzy systems in modeling, control and robot path

) planning

Part IHI: Genetic — Evolutionary algorithms

Part IV: Soft computing applications

PART 1 involves five chapters dealing with advanced neural-network controllers. In
particular, chapter 1 provides a comprehensive study on supervised leaming and the
back propagation (BP) algorithm, and chapter 2 deals with the neural-network based
identification of 2-dimensional systems in state space representation. The neural
network models employed are: multilayer perceptrons, radial basis function
networks, recurrent networks, weightless networks and adaptive resonance theory
{ART) network structures. The neurocontrollers derived and implemented include
adaptive regulators and generalized predictive controllers via local model networks.

PART H contains three chapters that present state-of-the-art material on the fuzzy
and neurofuzzy approach to system modeling, control and robot path planning.
Particular topics covered in this part are: functional reasoning (Takagi-Sugeno-Kang
model), adaptive-network-based fuzzy inference system (ANFIS), fuzzy adaptive
resonance theory (fuzzy ART), combined TSK-ART system modeling, fuzzy
nonlinear autoregressive modeling with exogenous variables (FNARX), fuzzy
nonlinear output error (FNOE) model, neurofuzzy model-based cancellation control,
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neurofuzzy model-based predictive control, fuzzy and neurofuzzy system
architectures, manipulator fuzzy obstacle avoidance, and mobile robot fuzzy and
neurofuzzy motion planning and navigating control.

PART III involves three chapters devoted to genetic and evolutionary algorithms
and their implementation in practical problems. The first chapter provides a tutorial
overview of genetic algorithms (GAs) starting with the fundamental concepts and a
simple genetic algorithm, and showing how GAs work. Then, several modifications
of the simple GA are presented and some applications of GAs are outlined. The
other two chapters provide a set of experimental results obtained when applying GAs
to multiple fault diagnosis, network configuration, edge detection in computer vision,
fish distribution determination, route finding and computer aided design of
integrated circuits. ‘

Finally, PART IV presents comprehensive investigations of the application of soft
computing techniques to adaptive and intelligent data fusion, computer gaming,
control, signal processing, and environmental systems. Particular topics studied here
are: fuzzy low-level and high-level fusion, neural fusing techniques, the
COMMONS GAME via neural learning, coherent neural networks in time —
sequential signal processing and control, evolutionary reinforcement neural fuzzy
systems, industrial air emissions, modeling of kraft recovery boiler via neural
networks, and neural applications in ambient air quality, honey bees for air
biomonitoring, and aqueous contaminants.

All contributions have been prepared by leading experts in the field and
include state-of-the-art material, fresh results and most of them practical how-to-do
issues. Taken together they provide a long-standing and well balanced source on soft
computing applications in systems and control. The book can serve as a reference
volume for the researcher and practitioner in the field.

The editor is grateful to all contributors for their timely and high-
quality contributions, and to the World Scientific’s editorial staff members for their
encouragement and support throughout the lengthy editorial process.

Athens, October 1998 Spyros G. Tzafestas
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Neuro-Based Adaptive Regulator

T.Tsyji, B.H. Xu and M. Kaneko

tIndustrial and Systems Engineering, Hiroshima University,
Kagamiyama, Higashi-Hiroshima, 739 8527 JAPAN
+Yamamoto Electric Corporation,
116 Wadamichi, Sukagawa, Fukushima, 962 0818 JAPAN

1 Introduction

The optimal regulator is usually designed based on a mathematical model of
a controlled system. The exact mathematical model, however, is not always
known in practical applications. Although some robust optimal regulators have
been proposed [1, 2, 3] for the controlled systems with linear uncertainties, these
robust optimal regulators cannot work well if nonlinear uncertainties exist.
For this problem, various regulators using neural networks have been ex-
ploited in recent years [4, 5, 6, 7, 8, 8]. Yamada and Yabuta {4] proposed a
method based on the direct use of a neural network as a feedback controller,
and discussed the stability of linear discrete-time single-input single-output
controlled plants [5]. Although this type of controller is very simple and can
be applied to various feedback control systems, the uncertainty included in the
controlled plant cannot be identified and parameters of the neural network such
as a learning rate and initial values of the weights are quite difficult to set.
On the other hand, Takahashi [6] used an adaptive neural identifier and a
direct neural feedback controller for controlling a flexible arm. The neural iden-
tifier estimates the unknown parameters of the arm and the neural controller
works on the basis of these identified parameters. Polycarpou and Helmicki [7]
presented a learning approach for automated fault detection and accommoda-
tion. Their system can detect faults of a plant and adjust the plant behavior
using multiple neural networks. Rovithakis and Christodoulou [8] used three
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neural networks in order to realize an adaptive regulator. Iiguni et al. [9] de-
signed a nonlinear regulator for a controlled system with nonlinear modeling
errors. The method uses two neural networks for identification of the controlled
object and for modification of a feedback control input according to the iden-
tified model. In these proposed methods, the unknown part of the controlled
system is identified by one neural network, and other neural networks are used
as a kind of compensator. Since the multiple neural networks must be trained,
it requires a long time for computation and learning, and stability analysis
becomes difficult.

Generally, the controlled system includes a known part and an unknown
part, and the unknown part is composed of linear and/or nonlinear uncertain-
ties. Therefore, it is necessary to establish an efficient regulator design utilizing
such information about the controlled system.

In this chapter, the Neuro-Based Adaptive Regulator (NBAR) for a class
of dynamic systems with linear and nonlinear uncertainties is proposed. The
NBAR includes not only an optimal regulator designed based on the linear
known part but also a neural network to identify the unknown part included
in the controlled system. The neural network also works as an adaptive com-
pensator for the unknown part of the controlled system. First, we show how
the neural network’s output compensates the control input based on the Ric-
cati equation, and how the compensatory solution of the Riccati equation is
estimated by using the least-squares method. Then, in order to illustrate the
effectiveness of the NBAR, it is applied to a control problem of a double cart-
spring system with linear and nonlinear uncertainties.

2 Neuro-Based Adaptive Regulator

2.1 System Formulation

As a controlled system, we consider the following syétem that consists of linear
and nonlinear parts:

() Apz(t) + A(z(t)) + Bu(t), (1)
y(t) = Cz(t), (2)

where z(t) € ®°%1, u(t) € R™*! and y(t) € R'*! are the state, the input and
the output variables, respectively; Az € R**", B € R°*™, C € ®'*" are the

it
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parameter matrices; and A(z(t)) is the nonlinear function of the state z(t)."
The goal of the control is to find the optimal input that minimizes the
quadratic performance index of the form

J= / T @)Qe(t) + uT () Rut)]dt, 3)
0 .

where R(€ ®7™*™) > 0, Q(€ R"*") > 0 are the weight matrices specified
by the designer. The nonlinear regulator problem for the system (1) is very
difficult to solve, and one of the linearized techniques is generally utilized in
order to synthesize an observer and a linear optimal regulator. However, serious
control problems may arise when (1) cannot be linearized appropriately, so that
nonlinear compensation is more strongly required. Therefore we propose an
adaptive regulator using a single neural network with capabilities of nonlinear
mapping, learning ability and parallel computation in this chapter.

2.2 Quadratic Optimal Regulator for Linearized System

First, we divide the matrix Ay of (1) into a known parameter matrix Az, €
R"%" and an uncertain matrix A4, € R"*", that is

Ap=Ar, +84., 4)
and assume that the nonlinear function A(z(t)).is approximately described as
A(z(t)) » A2(t) + Aae2(0) (5)

near the operating point of the controlled system. The matrix 4* € R**"
represents the linearized parameter and A4+ € R™X" represents the unknown
linearized modeling error.

Then the system (1) becomes

i) = Az(t)+ Bu(t), ©)
A = An+Ag, (M
An = AL; + A*; (8)
Ay = By +Aye, 9)

where Ay € R™*" and A, € R"*" denote the system uncertainty and the
nominal parameter, respectively. The system (6) is assumed to be controllable
and observable.



The optimal control input u*(t) that minimizes the performance index J of
(3) is given as
u*(t) = ~-R~*BT Pz(t), (10)

where P € ®"%™ is the unique solution of the following Riccati equation [10}:
PA+ AP~ PBR'BTP+Q=0. §3))

In this chapter, the solution P is split into two components:
P =P, + Ap, (12)

where P, € ®**" and Ap € R"X" are the solution for the known linear
part of the system (6) and the compensatory solution of the Riccati equation,
respectively.

Substituting (7), (12) into (11), we have

(Pn + Ap)(An + An) + (An + A4)T(P, + Ap)
—(Pa+Ap)BR'BT(P, +Ap)+Q =0. (13)

If the quadratic terms ApA4, ATAp, ApAp are sufficiently small, (13) can
be divided into the following two equations:

P,A,+ AP, - P,BR'BTP, +Q =0, (14)

ApAn+PaAa+ALP, + ATAp~ApBR'BTP,—P,BR™'BTAp = 0. (15)
In order to compute the optimal control input u*(t) of (10), the solution P
of the Riccati equation (11) has to be known. Although P, can be obtained
by solving the Riccati equation (14), the compensatory solution Ap must be
computed from the matrix equation (15).

2.3 Derivation of Compensatory Input

In this subsection, we use the least-squares estimation for the compensatory
solution Ap of the Riccati equation (15). From (15), we can have the following
form:

ApD+FAp = ALP, +P,Ay4, (16)
D = BR'BTP, - A,, an
F = P.BR'BT- 4T, (18)
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Deriving the quadratic form of the state z(¢) for both sides of (16), we have

2T ()Kz(t) = AT @)Paz(t) +2” (t)Pad(t), (19)
M) = Auz(t), (20)
K = ApD+ FAp, (21)

where Az{t) is the uncertain state caused by the uncerfainty A 4.
Developing (19) into a linear equation and arranging the linear equation
corresponding to the unknown compensatory solution Ap, we can obtain

w(t)8 = A1), (22)
6(0 = {"?Ih i 191,,, ° nl: Tty gnn}r € 32"2)(1, (23)
w(t) = [wll(t) cyWin (t)y ,w,u(t), . ,W;m(t)} (S 3%1)(11” (24)

wux(t)—}::c,(t)dhﬂk(t)+Z=h(t)f:k%(t) (kh=1,2---,n), (25)

izl

At) = Z 2 As, Opjizi(t) + Z Z z;(t)pji Az (1), (26)

j=1i=1 J=1i=1
where pi;, dni, fix are the elements of the known matrices P,, D, F, respec-
tively; ¥;; is the element of the unknown vector 8(t); and 6(t) = csAp is the
expanded form of the column of the matrix Ap [11].
When we can get s(> n?) sets of the sequential data with the sampling time
At, the following matrix equation is obtained from (22):

Q()8(t) = A), (27)
where
w(t — At)
Qt) = | wit - IAL) | € <, (28)
w(t _ sAt)
C A(t — At) ]
AlR) = | At - IAt) | e R (29)

| A(t — sAt)
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Figure 1: Block diagram of the neuro-based adaptive regulator

If A(t) of (26) is computed, then #(t) can be estimated by the least-squares
method, that is,

8(t) = QY (HA(L), (30)
where Q2% (t) represents the pseudo inverse matrix. For the real time control,
6(t) can be generally estimated in on-line procedure with the sequential least-
squares algorithm [12]. ’ _

Also it should be noted that, for the compensatory solution Ap of the
Riccati equation, the following Lemma exists which can be used to reduce the
number of estimated parameters of the compensatory solution Ap.

Lemma 1 If the weights R, Q are chosen as positive definite matrices, the
compensatory solution Ap of the Riccati equation (12} becomes a real and sym-
metric matriz (Proof: see Appendiz).

Consequently, when A(t) of (26) is obtained, the compensatory solution Ap
can be estimated. However, A;(t) included in (26) cannot be computed from
(20) since A4 is unknown. Therefore the neural network is introduced to solve
this problem.

2.4 Neuro-Based Adaptive Regulator

Figure 1 shows the block diagram of the NBAR. The identification system
shown in Fig. 1 is described as

Z(t) = Anz(t) + Bu(t) + 2w (t), (31)
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where Z(t) € RX1 and znN(t) € R**? are the predicted state variables of the
identification system and the output of the neural network, respectively.
Substituting (12) into (10), we have the optimal control input u*(t) as

() = ua(t) +Au(t), - (32)
tn(t) = —Kpz{l), (33)
K. = RBTPR,, (34)
Au(t) = —-RBTApz(t), (35)

where K, € R™*" is the feedback gain of the linear optimal regulator. The
identified state error €(t) € R"*! between Z(f) and z(t) is defined as

t) = ZT(t)— z(t), (36)
= fcﬁ(r)'-é(r)}dr
- *¢(ryr, 37)
() = [ewn(r) - Ao, (38)

where ((7) € R"%? represents the error between the neural network output and
the uncertain state. However, even if the identified error ¢(t) becomes zero, the
integrand term {(7) of (37) may not be zero. So, we define the energy function
E(t) for training of the neural network as

ER) = 8@+ 5O

1 1
= SO0 + 3¢ <)

= EO()+ EA), (39)
EO@) = ST, (40)
ED@) = -;-T(t)e(t)_ | (41)

When E(t) becomes zero, the output zxn(t) of the neural network agrees with
the state uncertainties A;(t), that is ‘

zan(t) = AL(t). (42)



Figure 2: Three-layer neural network

According to the learning of the neural network, we can expect that the control
input shown in Fig. 1 will gradually approach the optimal control input «*(t}
of (10).

3 Multi-layer Neural Network ‘and Learning

A multi-layer neural network used in the proposed regulator is shown in Fig. 2.
The number of the units of the input layer, the hidden layer and the output
layer are n, p and n, respectively. In Fig. 2, w;; represents the weight that
connects the unit j of the input layer to the unit ¢ of the hidden layer; vy
represents the weight that connects the unit ¢ of the hidden layer to the unit k
of the output layer. The weight matrices are represented as W(t) € %" and
V(t) € R™**P, respectively. Also, the input and output vectors of the neural
network are represented as z(t) and znn(t), respectively.
Let the unit j’s output of the input layer ( = 1,---,n) be

I; = z;(t), (43)

the unit i’s output of the hidden layer (i = 1,---,p) be
H; = o(s), (44)
s = S_j;lw.-jz,-, (45)

where the sigmoid function o{-) is defined as

o(u) 5‘:} tanh(74). (46)
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Figure 3: Sigmoid function used in the neural network

The parameter v is positive, and determines the shape of the sigmoid function.
Figure 3 shows the input-output relation of the sigmoid function. When v <
0.1, the sigmoid function o) can be approximated by the linear function, and
when v > 1, o(p) takes the form of the tanh function. Also, the unit k’s output
of the output layer (k= 1,---,n) is given as

Oy = a(K), (47)
K = Zz__lvk,‘Hi. (48)

In the training process, the energy function of (39) is minimized by changing
the weights w;; and vg;. According to the back-propagation algorithm [13], the
weight updating rules can be described as

vii(t+At) = () — r’aavi(:t))
_ [OEM() | JED()]
= OG0 P
_ [0EM(H) | 9EA(Y)]
= wij(t) -7 i aw'.j(t) + a‘w,‘j(t)J ’ (50)

where 1 > 0 is the learning rate; and At is the time interval of the neural
network learning. The function EX(t) of (39) for é(t) = ((t) is rewritten as

EV@) = T



23 lewm,(9) - Bey (O (51)
g=1
where znn, (1), 'A,'(t) are the elements of the neural network output zxn (%)

and the uncertain state A;(t), respectively.
By (37), (51), EW)(t)/Bvki(t) becomes

JED(@) n9znN. (1)
80;“-(‘6) - () Buii(t)
= &)o' (k) Hi, (52)

where é;(t) represents the elements of the vector é(t), and ¢’(-) denotes the

derivative of o(-).
Also, 3E()(t)/8wij(t) can be written as

SEM(z) _ Z q(t)azNN,,(t)

dwi;(t) = i(t)
= ;éq(t)('f (Kf)a (t) [E ¥3H]
= ,2;‘; é,(t)a’(:c,)v,;e’(s;)m [; wi; 1]
= Y &(8)o’ (kg)vgic! (5:)z; (). (53)
g=1 :

On the other hand, the function E()(t) of (39) for the identified error €(t)
is given as

EO@) = (@)

= IS0 - 0P, 54
k=1
and AE®)(t)/dvi(t) is described by
E(z)(t) Ser(t) dznn. (1)
Fou® ~ D ozmn (0 Gvm(t) (55)
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where £;(t) and zi(t) are the elements of the predicted state £(t) and the state
z(t), respectively; and € (£) is the element of the vector ¢(t). Then, the partial
derivative 9¢;(t)/3zn N, (t) is approximated as
Ber(t) ~ Acr(t)
dznn, (t)  Aznn, (t) )

The variation Aex(t) of €x(t) can be approximately computed as

(56)

N¢
Aa(t) = {D [znn(iAL) — Aq (7AL)] + Azwn, (B)}AL,
=0
N,

- Z{xNNk (jAt,) Ay, (3 Atc)}At:
=0

= Azyy,(t)AL,, (87)

where At, is the small sampling time and { = N;At,.
As a result, we can approximate J¢x(t)/8znn, () as

3€k(t)
.2 WY VI, ¥ S0 58
Bznn, (t) ¢ : (58)

Substituting (58) into (55) yields

SEA(t)

W a(t)At, M (59)

vy (t) :

In the same manner, dE®)(t)/8w;;(f) can be computed as

PE™() dznn, ()
)AL, ——— 60
6ng(t) ; !( ) a (t) ( )

Consequently, the updating rules of (49), (50) are reduced to the following
form

vri(t + At) & v () — e () + eg(t)Atg}?-;-f;%Q, (61)

gt + A0 m ) =1 Y0 @0l ) @)
g=1 *
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Figure 4: Double cart-spring system

Since (61) and (62) mean that the error signal for learning of the neural network
is the weighted sum of (t) and é(t), this learning rule corresponds to the PD
control of the feedback control system. Therefore, it is termed a PD updating
rule in this chapter. It should be noted that, if the energy functions of (39) are
modified as

EW@) = —;-'T(t)B;é(t), (63)
B = 2 WKielt) (64)

the energy function E(t) can be adjusted by the learning gains B; € R"*"?,
K; € R"*7 defined as the positive definite matrices.

4 Computer Simulation of Double Cart-Spring
System

In this section, the NBAR is compared with the conventional Linear Quadratic
Regulator (LQR) in order to illustrate the effectiveness of the NBAR. Let us
consider a double cart-spring system [14] shown in Fig. 4, where z(t), z2(t)
are the displacements of the cart A and the cart B, respectively; d(t) is the
disturbance applied to the cart A; u(t) is the control input, k3 is the spring
constant; M4 and Mp are the masses of the cart A and the cart B, respectively.
Ignoring a frictional force between the floor and the wheel of the cart, we have
the following motion equations:

MaZi () + ks[21(t) — 22(8)] = wa(t) +d(2), (65)
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MpiEy(t) — ks[z1() — 22(8)] = O (66)

By choosing the cart displacements and their velocities as the state variables,
we can get the state-space model of the double cart-spring system:

#(t) = Arnz(t) + Blu(t) + d(t)], ; (67)
where z(t) = [1(t), £1(t), z2(t), £2(1)]T, and
0o 1 0 0 0
AL = "'kbgMA (1) kb/éwA g  B= l/glA
k/Mg 0 —k,/Mp © 0

In this section, we use the estimated parameters of the system (67) as k; = 1
N/m, M4 = 1 kg, Mp = 1 kg. Then, the parameter matrix Ar used as the
nominal parameter A, is given as follows:

0 1 0 ©
-1 0 1 0
An = 0 1 0 O
1 0 -1 0

In the performance index of (3), the weight matrices are assigned as
Q = diag[0.5, 05, 05, 05], R=0.1,
so that we obtain the solution of the Riccati equation (14),

1.6508 0.4215 —0.4919 1.0599

04215 0.3665 —0.1053 0.2605
—0.4919 -0.1053 1.3156 0.0893 |’

1.059%  0.2605 . 0.0893 1.8504

and the feedback gain, |
K, = [4.2152, 3.6648, —~1.0529, 2.6049].

P, =

The elements of the uncertainty A, of (7) are chosen as uniform random
numbers in [~0.25, +0.25]:

0 0.2173 0 0
—0.2265 0  —0.2233 0
Aa= 0 0 0 -0.2166 (68)

0.0896 0 0.0856 0



In this case, the system can be rewritten as

z(t) Arz(t) + Blu(t) + d(1)], (69)
Ap = Apn+ 84 (70)

As a result, the optimal solution P* for the system (69) is given as

1.3744 03957 —0.2327 0.9343
pr | 03957 03825 -—0.0643 0.2841
~ | —0.2327 -0.0643 1.2580 0.1962 |’
0.9343 0.2841 0.1962 1.5189

and the optimal feedback gain K* is given as
K* = [3.9566, 3.8253, —0.6429, 2.8415].

Corresponding to the structure of this double cart-spring system, four units
in the input layer, twenty units in the hidden layer and four units in the output
layer are used in the three-layer neural network. The initial value of the weight
is set as a uniform random number in [-0.6, 40.6], the learning rate is n =
0.025, the parameter of the sigmoid function is 4 = 1 and the sampling time is
At = At, = 0.1 s. By Lernma 1, the compensatory solution Ap of the Riccati
equation is a symmetric matrix with 10 unknown elements and we choose 5 = 12
of (27) in order to keep the rank of the pseudo inverse matrix Q*(¢) more than
10. Using the disturbance d(t) of a rectangular signal with the amplitude 20 N
and the period T = 12 s, the following computer simulations are performed.

4.1 Control Performance

Figure 5 shows the simulation results under the NBAR (shown as the solid
line) and the optimal feedback gain K* (shown as the dashed line: LQR*),
where the displacement z,(t) of the cart A is shown. The responses for short
periods at the beginning of the learning and 10 minutes later are shown in
Fig. 5 (a) and (b), respectively. Although the large error between two methods
is observed in Fig. 5 (a), the result of the NBAR is approaching the optimal
solution using the LQR* according to the neural network learning as shown in
Fig. 5 (b). Thus, we can see that the NBAR can adaptively realize the optimal
control for the system (69) with the uncertainty A4.
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Then, the performance index J of (3) per one period of the disturbance d(t)
is computed: 7
4
J@) = =T (©)Q=(1) + v (1) Ru(t)]dt, (71)
@-1)T
where T=12s.

Figure 6 shows the change of the performance index J(i). It can be seen
that the performance index of the NBAR is almost the same as the index value
of the LQR" after learning.

Mogeover, the matrix norm of the &j;imation error between the estimated
value Ap of (30) by.the least-square method and the true value A} of the
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compensatory solution of the Riccati equation is defined as

1 T
Cap = ==

7 [ Iap - Ar@let, (72)
(G-1)7

and is shown in Fig. 7. In Fig. 6, 7, even if sufficient learning time has passed,
a small error between the NBAR and the LQR* exists. This small error may
be caused by ignoring the quadratic terms of the uncertainty A4 and the
compensatory solution Ap for deriving (14), (15), and this must be considered
as a problem to be dealt with in the future.

4.2 Ability of Learning and Identification

The control input u(t) of the NBAR approaches the optimal control input u*(t)
according to the learning of the uncertainties of the controlled system using the
neural network. In order to check the learning ability of the neural network,
we compute the energy function E(f) of (39) per one period of the disturbance
d(t), which is defined as
1 [T
E@l)= = E(t)dt. (73)
T Ji-1yr :
Figure 8 indicates the change of the energy function E(¢}. The energy function
E(3i) gradually decreases through the neural network learning.
The control performance using the neural network generally depends on
the initial values of the neural network’s weights. So, we check the control
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performance of the NBAR by varying the initial values of the neural network’s
weights. .

Figure 9 shows the relationship between the range [—¢, ] of the uniform
random number and the mean square error E(20). Note that the errors are
shown by the mean values and their standard deviations for 10 different ini-
tial values of the neural network’s weights. From Fig. 9, we may reasonably
conclude that, as the range of the random number becomes large, the mean
square error and its standard deviation increase. During the initial stage of
learning, the neural network’s output works as an undesirable disturbance to
the control system. Therefore, when small initial values are used, the learning
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of the neural network can be performed stably, and this gives the small mean
square error shown in Fig. 8. ‘

4.3 Nonlinear Uncertainties

Next, to investigate the effectiveness of the NBAR for nonlinear uncertainties
included in the controlled system, we add nonlinear elements into the spring
property of the motion equations (65), (66) and set the nonlinear function
A(z(2)) of (1) to be

) 0 8 0 0

- —z? 2

A= | VRPMa 0 ¥sOM T,
vzi(t)/Mp 0 —yzi(t)/Mp O

where ¢ is the index of the nonlinearity and is set as ¥ = 0.015.

Figures 10 and 11 are the simulation results using the NBAR (shown as
the solid line) and the feedback gain K, (shown as the dashed line: LQR)
designed for (67), where the displacements of the two carts and the values of
the performance index (71) are shown in Fig. 10 and 11, respectively. We can
see from these figures that even if nonlinear uncertainties exist in the controlled

system, the NBAR gives a smaller value of the performance index than the
LQR.
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5 Conclusion

In this chapter, the Neuro-Based Adaptive Regulator has been proposed for a
class of systems with linear and nonlinear uncertainties. It has been shown that
the neural network can be used for identifying the uncertainties and adaptively
compensating the control input, simultaneously. The NBAR computes the
compensatory control input from the neural network’s output based on the
least-square algorithm, and it is effective for a controlled system with linear.
and nonlinear uncertainties.

From a practical point of view, the learning speed largely influences the
applicability of the proposed methods. However, this chapter used the standard
neural network model and did not consider speeding up the learning. For
improving the learning speed as quickly as possible, two problems have to be
solved in the future. The first one is the learning rate that should be studied in
connection with the stability of the control system. The second is the weight’s
initial value for the neural network. During the initial stage of the learning,
the neural network’s output works as an undesirable disturbance to the control
system, so that the weight’s initial value has a large effect on the stability and
the learning speed of the control system. It is necessary to establish a design
method for the initial value, which should be stable and have as a small effect
as possible on the control system.



96

Appendix

Proof of Lemma 1. If the weights R, @ are chosen as the positive definite
matrices, we can see that the solution P of the Riccati equation (11) and the
solution P, of the Riccati equation (14) are the real symmetric matrices [15].
From (12), Ap is given by

Ap=P-P,, (74)

then we can get the real symmefric matrix Ap.
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