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Abstract

In this chapter, artificial force-field based methods used in
robotics are briefly reviewed with emphasis on the fact that little
attention has been paid to the temporal aspects of this class of
path planning methods. On the contrary, the ability to control
motion time as well as the speed profile of the generated trajec-
tories is of great interest in real-life applications. We introduce
a trajectory formation technique that allows full control of the
transient behavior parameters (namely, time-to-target and veloc-
ity profile).

1 Introduction

In the artificial force field approach used for the trajectory genera-
tion problem of mobile robots and robotic manipulators, such as Loeff
& Soni (1975), Khatib (1986), Connolly et al. (1990), Kim & Khosla
(1992), Sato (1993), Hashimoto et al. (1993), the goal is represented
by an artificial attractive potential field and the obstacles by corre-
sponding repulsive fields, so that the trajectory to the target can be
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associated with the unique flow-line of the gradient field through the
initial position and can be generated via a flow-line tracking process.
This approach is suitable for real-time motion planning of robots since
the algorithm is simple and computationally much less expensive than
other methods based on global information about the task space. How-
ever, at least two important weak points should be singled out: local
minima and transient control.

As regards the first problem, it is a simple observation that when
the attractive potential to the goal and the repulsive one from the
obstacles are equal, the gradient vector of the potential field becomes
zero and the robot falls into a deadlock. Many methods have been
proposed to overcome this problem. Connolly et al. (1990) proposed
a method using the Laplace’s differential equation based on the idea
that the deadlock problem is completely solved when one can define
a potential function which structurally does not include local minima.
In fact, some potential functions of this kind have been proposed (Kim
& Khosla 1992, Sato 1993, Hashimoto et al. 1993).

The other disadvantage is that in the artificial force field framework
it is difficult to regulate the transient behavior of the generated trajec-
tories such as the movement time and the shape of the velocity profile.
For example, even if we use potential functions without local minima,
which assure that the robot reaches the goal for any task environment,
it is difficult to estimate the movement time required for reaching be-
forehand. Also, the velocity profile of the generated trajectory cannot
be adjusted as we may require since it is determined by the shape of
the potential field. Thus, contradicting the statement that a winning
feature of the artificial force field approach is real-time applicability,
it turns out that it is difficult to use the generated trajectory for the
control of mobile robots or manipulators in real time because of this
disadvantage. Quite likely, the scarce consideration about the tran-
sient behavior of the planned paths was motivated by the fact that the
deadlock-free requirement was the overwhelming concern in the field.

Recently, Morasso et al. (1993, 1994) proposed a two-dimensional
trajectory generation approach for modeling human reaching move-
ments. In this method, the hand trajectory is generated by synchro-
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nizing the translational and rotational velocities of the hand with a
scalar signal generated by a Time Base Generator (TBG). The TBG
generates a time-series, i.e. a scalar signal with a controllable finite du-
ration and bell-shaped velocity profile. Thus, the movement time and
the velocity profile of the hand trajectory can be regulated indirectly by
adjusting the parameters of the TBG. Then, Tsuji et al. (1994, 1995a,
1995b) applied the TBG mechanism to the control of a non-holonomic
robot and a redundant manipulator.

In this chapter, a trajectory generation technique is described by in-
troducing the TBG into the artificial force field approach. The method
can regulate the movement time from the initial position to the goal
and the velocity profile of the robot. Remarkably, the method can
take advantage of a variety of potential functions developed by people
working in the field (particularly, the functions which are deadlock-
free), because it is a property of the proposed mechanism that the
temporal structure of the planned path is regulated through the TBG
and is rather independent of the specific type of potential function.

2 Trajectory Generation Using Time Base Gen-
erator

2.1 Closed Loop Control System

Let us consider a trajectory generation problem with spatio-temporal
constraints, which consists of moving a robot from an initial position
zo at t = 0 to a target position z4 at ¢t = t;, and let us solve it by
means of a closed loop control system. Figure 1 shows a block diagram
of the control system, where TBG denotes the time base generator. In
particylar, the robot system can be described by

& = g(z)u, (1)

where z € R! is the position vector of the robot and u € R™ is the
input, and the proposed feedback controller is structured as follows:

u= f(e,-g), ‘ (2)
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where e € R/ is the error vector e = z4 — = and £ (with its time deriva-
tive ) is the scalar signal generated by the TBG; £(t) is defined as a
first differentiable and monotonically non-increasing function satisfying
£(0) = 1 and &(fy) = 0 with ¢y denoting convergence time.

&

Xq L4 X

uzﬂe,é 3 X=gx)u
.,,5 .f E &

Figure 1: A block diagram of the proposed control system

Y

2.2 Examples of TBG

In order to illustrate the operation of the TBG in the control loop, we
use the terminal attractor concept. This special kind of attractor was
introduced by Zak (1988) into a non-linear neural network model and
it was shown that systems with terminal attractor dynamics always
converges to the equilibrium point in a finite time, while violating the
Lipschitz condition of ordinary differential equations.

Here, the following nonlinear differential equation is considered as
an example of TBG with a terminal attractor:

€= ¢(€) = —(€(1 - €))°, )

where 7 is a positive constant which allows to control the convergence
time g, and § is a constant which determines the behavior of the TBG,
with 0 < B < 1. This type of TBG was originally defined for a model of
human movements (Morasso et al. 1993, 1994). Morasso et al. derived
the TBG with a bell-shaped velocity profile in order to represent the
feature of the end-point trajectory. From (3) we can see that £ has two
equilibrium points: a stable one (£ = 0) and an unstable one (£ = 1).
Consequently, £ always converges stably to £ = 0, when an initial value
of £ is chosen as £(0) = 1 — ¢, with a very small positive constant e.
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Figure 2: Change of £(t) depending on the convergence time t; with
the constant power parameter § = 0.5

Then the convergence time ¢y can be calculated as

ty 0 d¢ I (1-p6)
ty = j dt ~ / = s 4
1= J “% ) we = T -28) @
where I'(-) is the gamma function (Euler’s integral of the second kind).

Thus, the system converges to the equilibrium point £ = 0 in the finite
time iy if the parameter v is chosen as

_’a-8)
7= LT - 28)

()

Again/ this means that the point is a terminal attractor.

The velocity signal £(t), which is null for ¢ = 0 and t = ty, has
a bell-shaped profile with the maximum absolute value at ¢ = t;/2:
[écts/2)| = 74

Figures 2 and 3 show the changes of £(t) generated by the TBG
depending on the parameters ¢; and 8. In Fig. 2, the time histories
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Figure 3: Change of £(t) depending on the power parameter # with the
constant convergence time {; = 1.0 s

of £(t) and £(t) are shown depending on the convergence time ¥y =
1.0, 1.5 and 2.0 s under the parameters 8 = 0.5 and ¢ = 1.0 x 10™9,
All trajectories converge to the equilibrium point at the specified time
t;. Also, Fig. 3 shows time histories of {(t) depending on the change
of the power parameter § = 0.25, 0.5 and 0.75 with t; = 1.0 s and
€ = 1.0 X 107°, The time history of £(t) can be regulated through the
power parameter § while the convergence time remains constant.

In summary, by selecting two parameters of the TBG (t; and g),
we can generate a whole family of time-varying signals £(t). Note that,
from the point of view of real-time implementation, it is possible to use
any scalar function of time satisfying the properties of £(t) described
above: half period of the cosine function, a look-up table etc.
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2.3 Controller Design on the Basis of Artificial Potential
Fields

In order to design the controller of Fig. 1, a differentiable potential
function V(z) is defined in the task space. In particular, we simply
assume that at the target position z4 the potential function is zero and
it is positive for any other position z. Also, we assume that the control
input u is determined in such a way that the time derivative V, which
can be expressed as V = 8V/8z#, is given by

v =pvs, (6)
§
where p is a positive constant. Since p> 0,V > 0,£ >0 and £ < 0 at
any t except for ¢t = ¢y, we have V < 0, that is, asymptotic stability of
the system is assured.
Equation (6) can be transformed as

av Vv
—-d-é- = p-g». (7)

and this differential equation can be readily solved as follows:
V= VOEP’ - (8)

where Vg = V(zp) is the initial value of V. Thus, we can see that
the potential function is “synchronized” with the TBG because V is
proportional to the pth power of £ and since { reaches zero at ¢y so
must do V: in other words, the robot is bound to reach the target
position zq4 at t = 14.

Figure 4 shows the time courses of V and V, for a TBG described
by (3). The convergence time and the power parameters of the TBG
are ty = 1.0 and # = 0.75, respectively, and the initial value of the
potential function Vj is V5 = 100.

The first time derivative of the potential function is given by

V = —ypVptPtF1(1 - €). (9)
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Figure 4: Change of V and V depending on the parameter p

and in the limit (£ — 0) we get V = —ypVptP*P-1  from which we
can see that V converges to zero at ¢ ¢ if the parameter p is selected
according to p > 1 — B: under this condition, V is bounded along the
generated trajectory.

It can be seen from Fig. 4 that V and V converge to zero at ¢ = 1.0
s when p > 0.25, but V diverges at t = 1.0 s when p < 0.25; the time
course of V' near t; strongly depends on p. When the parameters p and
B are chosen adequately, the potential function V converges to zero at
t = ty so that the robot can reach the target position at the desired
time.
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3 Trajectory Generation of a Unicycle-like Ve-
hicle

In this section, we show how the general approach described in the pre-
vious section can be applied to robot control problems with complex
kinematic constraints, as in the navigation of non-holonomic vehicles.
In fact, control of mobile robots with nonholonomic constraints has re-
ceived a great deal of attentions (Li & Canny 1993). For the closed loop
control on the basis of a kinematic model of a mobile robot, Samson
(1991) and Pomet (1992) proposed a feedback law using periodic time
functions and showed that the mobile robot with two driving wheels
can be positioned to the given final configuration for any initial con-
dition. Although the smooth time-varying feedback of this approach
can assure the stability of the system, slow convergence is a practical
defect. Then, Canudas de Wit & Sgrdalen (1992) proposed a piecewise
smooth feedback law.using a discontinuous controller and proved the
exponential stabilization of the mobile robot as well as the extreme im-
provement of the convergence speed to the target point, with respect
to time-varying smooth feedback control. Also, Badreddin & Mansour
(1993) showed that a special choice of the polar coordinate system rep-
resenting the position and orientation of the mobile robot allows to
derive a smooth stabilizing control law without contradicting the well
known work of Brockett (1983). Casalino et al. (1994) derived the effec-
tive closed loop control law in the framework of the Lyapunov stability
theory, which can assure the global stability. In this section, the tra-
jectory generation method using the TBG is applied to a unicycle-like
vehicle, that is a mobile robot with two driving wheels.

3.1 'Model of a Unicycle-like Vehicle

Figure 5 shows a unicycle-like vehicle, where £, denotes the world
coordinate system (for a planar task space) and X, the moving coordi-
nate system fixed to the vehicle (with the origin of X, set symmetrically
among the wheels and the z. axis oriented as the direction of motion
of the vehicle). Thus, we can choose the following generalized coordi-
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Figure 5: A unicycle-like vehicle

nates of the vehicle: position (z,, ¥,,) and orientation angle 8 of X,
with respect to X,,.

The kinematics of the vehicle can be described by the following
relationship between the time derivative of the generalized coordinate
vector z = (T, y,,,,&)r and the linear and the angular velocxtxes of the
vehicle u = (v,w)T:

z = G(z)u, (10)
where
cos8@ 0
G(z)= |sinf 0 (11)
0 1

and the following kinematic constraint must be satisfied (it can be
easily derived from equation 10):

Zysing — gy, cos8 = 0. (12)

3.2 Derivation of the Control Law

Our purpose is to derive a control law that automatically drives the ve-
hicle from the initial configuration to the target configuration. Without
any loss of generality, the origin of the world coordinate system L, can
be set at the target position, with the z,, axis directed as the desired
final orientation of the vehicle (Fig. 6).
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Figure 6: Coordinate transformation

The piecewise smooth feedback control law proposed by Canudas de
Wit & Sgrdalen (1992) uses the family of circles that pass through the
origin and the current position of the vehicle and contacts with the z,,
axis at the origin as shown in Fig. 6. In the figure, 8, represents the
tangential direction-of this circle at the position z and it belongs to
[=7, m). Their control law is based on the idea that the arc length
from the origin to the current position should be decreasing and the
current angular orientation of the vehicle should agree with the tan-
gential direction #;. In our approach the distance r from the current
position to the origin is used, instead of the arc length.

Let « denote the angle between the tangential direction 4 and the
current angular orientation 8, with the intention of designing a control
law which can eliminate this kind of orientation error together with
the corresponding positional error denoted by the distance r from the
target. The following coordinate transformation from = = (Zy, Yu, )T
to z = (r,a)7 is then introduced (Canudas de Wit & Serdalen 1992):

(Zws Yu) = V Tyw? + Yo’ (13)

&(Zw, Yu, ) = € + 2n(e)r (14)

where
e=8-—48y, (15)

04 = 2atan2(Yuw, Tw), (16)
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and n(e) is a function that takes an integer in order to satisfy a ¢
[-=x,7). Also, atan2(-,-) is a scalar function defined as atan2(a,b) =
arg(b + ja), with j denoting the imaginary unit and arg the argument
of a complex number. As a result of such coordinate transformation
z = F(z), the target configuration of the vehicle can be expressed as
z; = (0,0)T.

Thus, in order to derive the control law which can stabilize the
system to the target, we can write, first, the relationship between z
and

i= ag(;)z = J(2)3, (17)
where
_ [zu(z? + Yw?) M yu(z? + yu?) "2 0] 23
(=)= [Zyw($w2 + 3% =2z, (T + YD) 1 €x. (18)

Substituting (10) into (17), we have the relationship between # and
the system input u:

= J(z)G(z)u = B(z)u, (19)
where
B@) =, 7] (20)
bi(z) = (2w’ + ¥ ?) M2 (2o cos 8 + y, sinb), (21)
ba(2z) = 22w’ + yu®) " (yuw cos 0 — z, sin b). (22)

Thus, the number of state variables is reduced to the same number
as the system input and for this system the following potential function
can be defined:

= % (k,rz + kaaz) , (23)

where k, and k, are positive constants. By differentiating the above
equation and taking into account (19), we obtain

V = ket + koad = kebyrv + koo (b2v +w). (24)
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On the other hand, for the potential function (23), equation (6)
reduces to .
¢
£
Comparing (24) with (25), we can derive the following control law for
coordinated speed and steering :

pr:ét

R PRI
w —ba(z)v + 22O

where it is assumed that b; # 0 for any t except for ¢ = {;.

Substituting the control law (26) into the system equation (19), we
have

v=§@ﬁ+@&) (25)

I i1
= blv = Zf s (27)
. _poé
G=bywtw= T (28)
from which we obtain
dr _or (29)
¢~ 2¢’
da pa
— =i 30
Solving this differential equation, we can get
r = rotk, (31)
a = aofl;', (32)

where rg and ag are the initial values of r and «, respectively. Thus it
can be seen that the distance error r and the engular error o decrease
as the (£)th power of £ under the control law (26).

In summary, the system equation (19) reduces to

i = BRek-1g, (33)
o=ty (34)

and if the control variable £ goes down to 0 according to (3), we can
see that p > 2(1 — B) is required for keeping bounded the values of #
and .
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3.3 Computer Simulations

127

y.[m} ot
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Figure 7: Trajectories generated by the control law when the vehicle
is initially located on a circle in the zy~yw plane with 8y = /2 rad.
(The arrow denotes the initial orientation 8.)

3.3.1 Generation of Curved Trajectories Figures 7 and 8 show
the results generated by the proposed method of coordinated speed-
steering control, for several initial conditions located at different points
on a circle, with a 10 m radius: the initial orientation angle 6g is #/2 in
Fig. 7 and 0 in Fig. 8, respectively. The TBG parameters are: ¢y = 1.0
s,p=2, 8 =0.75.

It can be observed that the control law (26) becomes singular when
the term b;(z) goes to 0 and from (21) it is clear that such singularity
occurs in the case that the orientation vector of the vehicle is orthogonal
with respect to the vector which joins the current to the target position.
We tested the robustness of the control mechanism in the neighborhood
of the singular configurations, by carrying out a number of simulations
with initial conditions very close to singularity. Some of them are
included in Fig. 7 and 8: two trajectories starting from locations close
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Figure 8: Trajectories generated by the control law when the vehicle is
initially located on a circle in the z,-y, plane with 8, = 0 rad. (The
arrow denotes the initial orientation 6y.)

to the z,, axis in Fig. 7 (z¢ = [10m, 1.0 x 10~°m, 7/2rad]” and z,
= [-10m, —1.0 X 10~%m, 7/2rad]7), and two trajectories starting from
points close to the y,, axis in Fig. 8 (zo = [1.0 x 10~°m, 10m, Orad}?
and zg = [~1.0 X 10~%m, -10m, Orad]¥). In all cases we observed that
the actual trajectories are repulsed from the singular configuration and
the vehicle can arrive at the target position in a smooth way, without
any forward/backward oscillatory movement.

We can also observe that the trajectories from the initial config-
urations zo = [5v2m, 5v/2m, x/2rad]T and zo = [-5v2m, ~5v2m,
#/2rad]T of Fig. 7 appear to be circular. In fact, it is possible to
prové their circularity in a formal way. Let us suppose that the initial
orientation 8y agrees with the tangential direction of the circle passing
through the initial position and the origin, as in Fig. 9. From (14) we
have ap = 0 and thus, taking into account (26), we obtain

w = <by(z)v. (35)
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Figure 9: Generation of a circular trajectory

If we denote with Rp the radius of the circle defined at the initial
position, we have
Ro = Zuo® + Yuo®
2Ywo
and using simple trigonometric relations (sin8 = z,,/Ro and cos8 =
(Ro — Yw)/ Ro) we can transform the (22) expression of the by(z) gain
in the following way

_ 2 Ro = yuw Tw _____._1_.
b’--zwz-ww‘-’( Ro y"’“TR;z’”)- Ro’ (37)

which tells us that in this situation such gain becomes a constant. As
a consequence, the vehicle approaches the target sliding on the circle
and reaches it in the planned convergence time. For such special case
of circular paths, Fig. 10 shows the time histories of the z,, coordinate
and the linear velocity v (initial configuration zo = [{5v2m, 5v/2m,
x/2rad]T, as in Fig. 7). In particular, the output of the proposed
controller (solid line) is compared with the results of the method by
Canudas de Wit & Sgrdalen (1992) (dashed line) and we can see that
while the latter method tends to approach the target with a progressive
slowing down after an initial jerk, our method gener.ates a smoother
time series with an approximately bell-shaped profile which converges
to the target in the appointed time #;.

, (36)
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Figure 10: Time histories of z,, and v where the initial position of the
vehicle is g = [5v/2m, 5v/2m, 7/2rad]l

3.3.2 Response to External Disturbances At first sight, the
proposed method might appear to be a kind of the open loop control if
we consider that, as the consequence of the control law, the resulting
path is described by (31) and (32). However, this is not the case, as it
is clearly shown by the simulation illustrated in Fig. 11, in which an
external disturbance was applied during movement, suddenly displac-
ing the position of the vehicle. After the vehicle starts from the same
initial configuration of Fig. 10, the z,, coordinate is externally changed
to z, = 8 m at time ¢ = 0.5 s and it can be seen that the resulting
trajettory, following the disturbance but keeping the same control law,
is still able to smoothly converge to the target in the planned time.
In fact, the initial values ro and g which appear in (31) and (32) are
not computed explicitly in our method but are natural consequences
of the feedback control law, which is able to compensate the effect of
the external disturbance. Accordingly, even if equations (31) and (32)
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Figure 11: Generated trajectory when the position of the vehicle is

disturbed externally at ¢t = 0.5 s
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are violated by applying the external disturbance, the proportional
relationship itself is preserved and the vehicle converges to the target
position at the time ¢y specified in the TBG.

4 Conclusions

In this chapter we discussed an approach which allows force field based
mechanisms of trajectory formation to have a controllable temporal
transient. Asan example, we applied it to the control of non-holonomic
unicycle-like vehicles but its range of application is quite large. In
particular, it can play an important role in the coordination of multiple
robots where trajectory interference is intrinsically a spatio-temporal
phenomenon.

The relevance in biological motor control is multi-faceted. In previ-
ous chapters the dynamics of cortical maps is considered from the point
of view of field computation. Thus, all the dynamic phenomena which
may be interpreted as processes of flow-line tracking, in a field with
point or region attractors, may well be guided and time-controlled via
the TBG mechanism: it is sufficient to modulate the relaxation gain
with the TBG variables. An important side-effect is that it allows
the synchronization of a number of loosely coupled dynamic processes
which are occurring in different cortical maps, whatever the shape and
the metric of the respective fields. On a higher hierarchical level, the
same mechanism might operate in problems of bimanual coordination,
which require accurate timing of two quasi-independent motor control
sub-system.

As regards the biological implementation of the TBG, if we consider
that it is also responsible for starting the trajectory formation process,
we can speculate that a plausible site is in the subcortical structures,
particularly in the circuits which receive information from different cor-
tical areas (striatum — pallidus — thalamus) and then loop back to the
cortex. This loop, which has a mainly excitatory nature, is modulated
by the inhibitory influence coming from another nucleus (substantia ni-
gra) via dopaminergic synapses. Deficiencies of this neurotransmitter
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are known to be involved in the motor impairments of the Parkinson
syndrome, which include slowness and difficulty to initiate movements.
Symptoms which are compatible with a malfunctioning TBG.
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