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Impedance control is one of the most effective con-
trol methods for interaction between a robotic manip-
ulator and its environment. Robot impedance con-
trol regulates the response of the manipulator to con-
tact and virtual impedance control regulates the ma-
nipulator’s response before contact. Although these
impedance parameters may be regulated using neural
networks, conventional methods do not consider regu-
lating robot impedance and virtual impedance simul-
taneously. This paper proposes a simultaneous learn-
ing method to regulate the impedance parameters us-
ing neural networks. The validity of the proposed
method is demonstrated in computer simulations of
tasks by a multi-joint robotic manipulator.

Keywords: robot manipulator, impedance control, neural
networks, learning of impedance parameters

1. Introduction

Impedance control is effective control for contacted ob-
jects such manipulators conducting tasks softly with a
contacted object [1, 2]. Impedance control controls the
response to external force by appropriately adjusting the
mechanical impedance parameters for a controlled ob-
ject; i.e., stiffness, viscosity and inertia. Conventional
impedance control, however, which is performed using in-
teraction force by contact between a manipulator and ob-
ject, cannot be applied to tasks that doe not involve envi-
ronmental contacts. Tsuji et al. [5, 6] and Nakabo et al. [7]
proposed control methods for noncontact tasks by setting
virtual impedance between controlled and contacted ob-
jects. Virtual impedance control proposed by Tsuji et
al. assumes a virtual sphere at the hand of a manipula-
tor, where virtual force is applied to the hand by setting
virtual impedance between the hand and the approaching
object. Nakabo et al., on the other hand, proposed a vi-
sual impedance control, where virtual impedance is set

from visual information, and torque calculated from the
impedance is applied to each robot joint.

These methods have difficulties in calculating appro-
priate impedance parameters due to the need to con-
sider nonlinear characteristics included in the controlled
or contacted object. Parameters have been adjusted ap-
propriately for tasks through learning using neural net-
works (NN), which is superior in nonlinear approxima-
tion. Gomi and Kawamoto [8], for example, proposed
feedback control with NN learning as a nonlinear com-
pensator for impedance control, and Jung and Hsia [9]
proposed compensation adaptive to controller output by
integrating NNs with a past position as input parallel
to the controller. Tsuji et al. proposed a method of
manipulator control for contact tasks adjusting mechan-
ical impedance parameters set to a manipulator (hand
impedance parameters) appropriately by repeated NN
learning [10–13] and applied these to virtual impedance
control, realizing manipulator response to movement of
the contacted object [14].

Control with conventional impedance learning, how-
ever, requires adjustment for hand or virtual impedance
parameters. Hand impedance control does not involve the
concept of virtual impedance, limiting its application to
tasks that have contact with contacted objects. Virtual
impedance control, however, involves hand impedance
where effects of impedance control are not appropri-
ate without appropriate parameter setting. Since hand
impedance parameters cannot be set by learning, adjust-
ment relies on trial and error, making it difficult to deter-
mine parameters suitable for intended tasks.

We propose simultaneously learning both hand and vir-
tual impedance during an operation to solve problems
in the two types of impedance control and to achieve
effective operation. We determined equations for hand
impedance control and virtual control (Section 2), adjust-
ment of NN impedance parameters (Section 3), and sim-
ulation results and the feasibility of our proposal (Sec-
tion 4).
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Fig. 1. Schematic view of the proposed simultaneous
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2. Impedance Control

Figure 1 shows our system concept and Fig. 2a control
block diagram. Control involves hand impedance param-
eters to control responses to external force in contact with
contacted objects and to control the manipulator trajec-
tory in free movement, and virtual impedance parameters
used for movement relative to the movement of contacted
objects.

2.1. Hand Impedance Controller [12� 13]

When the degree of freedom (DOF) of the operating
space is l, and that of a joint is m, the equation of mo-
tion for a manipulator in contacts with contacted objects
is generally described as follows:

M�θθθ�θ̈θθ �h�θθθ � θ̇θθ� � τ �JT �θθθ�Fint . . . (1)

where θθθ � θ̇θθ � θ̈θθ � ℜm represent the angle, angular velocity,
and angular acceleration vector of a joint; M�θθθ� � ℜm�m

an inertia matrix; h�θθθ � θ̇θθ� � ℜm a nonlinear term such as
Coriolis force, joint friction, centrifugal force, or gravity;
τ � ℜm a joint driving torque; Fint � ℜl external force;
and J � ℜl�m a Jacobian matrix.

Manipulator hand movement is dictated by:

MedẌ�BedẊ�KedX � Fint . . . . . . . (2)

where Me, Be, and Ke � ℜl�l represent a target inertia
matrix, target viscosity matrix, and target stiffness matrix
and dX � Xe�Xd the deviation of current Xe � ℜl from
target hand position Xd � ℜl . Hand impedance (Fig.2) is
set as M�1

e �Bes�Ke� and M�1
e .

2.2. Virtual Impedance Controller [14]

Assume that a virtual sphere of radius r with the cen-
ter at the manipulator hand, and a contacted object is ap-
proaching the hand (Fig. 1). When the position of a con-
tacted object is Xo � ℜl , normal vector dXo from the sur-
face of the virtual sphere to contacted object is described
as follows:

dXo � Xr � rn . . . . . . . . . . . (3)

where the vector from the hand to the contacted object is
Xr � Xo�Xe, and vector n � ℜl is defined by:

n �

��
�

Xr

�Xr�
�Xr �� 0�

0 �Xr � 0��
. . . . . . . . (4)

When a contacted object enters the virtual sphere, virtual
impedance is set between the contacted object and hand.
Using virtual impedance and dXo, virtual external force
dXo applied to the hand from the contacted object is de-
fined as:

Fo �

�
ModẌo �BodẊo �KodXo ��Xr� � r�

0 ��Xr�� r�
. (5)

where Mo, Bo, and Ko � ℜl�l represent a target inertia
matrix, target viscosity matrix, and target stiffness matrix.
As Eq. (5) indicates, when �Xr� � r, i.e., the contacted
object is outside the virtual sphere, Fo � 0. Considering
virtual impedance control, the equation of motion for the
manipulator hand is described using Eqs. (2) and (5):

MedẌ�BedẊ�KedX � Fint �Fo � . . . (6)

External force Fo caused by virtual impedance Mo�Bo�Ko
is applied before the contacted object touches the hand,
and position and velocity control are conducted with hand
impedance M�1

e �Bes �Ke�, generating hand movement.
(Fint � 0). When Fint �� 0, hand is restricted in contact
with the contacted object, force is also controlled. In
Fig. 2, virtual impedance is set as Mos2 �Bos�Ko.

2.3. Impedance Control

Manipulator impedance control rules [2] for hand and
virtual impedance are expressed as follows:

τ � τeffector � τcomp . . . . . . . . . (7)

τeffector � JT�Mx�θθθ��M�1
e ��KedX�BedẊ�

�Ẍd � J̇θ̇θθ �� �I�Mx�θθθ�M�1
e �Fint

�Mx�θθθ�M�1
e Fo� . . . . . . . . (8)
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τcomp � �M̂
�1

�θθθ�JT Mx�θθθ�J�T ĥ�θθθ � θ̇θθ� . . . (9)

Mx�θθθ� � �JM̂
�1

�θθθ�JT ��1 . . . . . . . . (10)

where M̂�θθθ� represents an estimated inertia matrix,
ĥ�θθθ � θ̇θθ� estimated h�θθθ � θ̇θθ�, τeffector joint torque for con-
trolling the manipulator hand impedance, τcomp joint
torque for linear compensation for h�θθθ � θ̇θθ� in the equa-
tion of motion, and Mx�θ� � ℜl�l is regular unless the
arm is in an unusual position. Assuming that estimated M̂
and ĥ are close to true values, manipulator dynamics are
linearized using designed control rules as follows:

Ẍe � Fact . . . . . . . . . . . . . . . (11)

where Fact � ℜl represents control input expressed in the
operating space.

Control input Fact, which realizes the above two types
of impedance control, is as follows:

Fact � Ft �F f � Ẍd . . . . . . . . . . (12)

Ft ��M�1
e �BedẊ�KedX� . . . . . . . (13)

F f � M�1
e �Fint �Fo�� . . . . . . . . . (14)

These enable a wide range of operations by adjusting
impedance parameters by application. The next section
will discuss the way to adjust these impedance parame-
ters by learning with NN.

3. Simultaneous Robot Impedance Learning
with NN

Formulated impedance parameters in the previous sec-
tion are adjusted through repeated NN learning.

3.1. Online Learning

We realized smooth contact tasks by learning and con-
trolling relative velocity and interaction between the ma-
nipulator and the environment before and after contact.
Evaluation function E�t� used in NN learning is defined
as:

E�t� � Ef �t��Ev�t� . . . . . . . . (15)

where E f �t� is an evaluation function of external force
applied to the manipulator hand, and Ev�t� is that applied
to velocity.

In hand impedance learning, Me is involved in learning
objects, and these three are controlled by adjusting M e.
Certain values are set for Ke and Be [12, 13], and each NN
is set for hand impedance Me and virtual impedance Ko,
Bo, and Mo, where NN weighting factors are renewed to
minimize E�t�. In online learning, NN weighting factors
are renewed to minimize E f �t� and Ev�t� at predetermined
sampling times. Impedance as NN output approaches a
preferable value by modifying NN weighting factors wi j
to reduce E f �t� and Ev�t� to the maximum.

Each modification amount ∆wi j for NN weighting fac-

tor wi j is described as follows:

∆wi j ��η
∂ E�t�
∂ wi j

. . . . . . . . . . . (16)

∂ E�t�
∂ wi j

�

�
∂ E f �t�

∂ Fact�t�
�

∂ Ev�t�
∂ Fact�t�

�
∂ Fact�t�
∂ O�t�

∂ O�t�
∂ wi j

. . . . . . . . . . . (17)

where η represents a learning ratio, Fact�t� � ℜl

control input, and O�t� � ℜl�4 output of each NN.
∂ Fact�t��∂ O�t� is calculated with Eqs. (11)-(14), and
∂ O�t��∂ wi j is calculated by the law of error propagation.
∂ E f �t��∂ Fact�t� and ∂ Ev�t��∂ Fact�t�, however, cannot
be calculated directly due to manipulator dynamics.

∂ E f �t��∂ Fact�t� and ∂ Ev�t��∂ Fact�t� in Eq. (17) are
approximated discretely to calculate the change in E f �t�
or Ev�t� to a minute change of Fact�t�, then modification
is calculated for each NN weighting factor ∆wi j online.
Learning for the hand and virtual impedance are detailed
below.

3.2. Hand Impedance Learning
When the hand contacts a contacted object, external

force Fint is applied to the hand by the contacted ob-
ject. Since hand impedance Me rolls to adjust the hand
response to external force caused by contact, such eval-
uation is provided for Me online learning involving Fint
closer to the target value. The evaluation function for M e
adjustment is configured as follows:

E f �t� �
1
2

�
Fd�t��Fint�t�

�2
. . . . . (18)

where Fd�t� is a target interaction. Here, ∂ E f �t��∂ Fact�t�
in Eq. (17) is developed into:

∂ E f �t�

∂ Fact�t�
�

∂ E f �t�

∂ Fint�t�
∂ Fint�t�
∂ Fact�t�

� . . . . . . . (19)

∂ Fint�t��∂ Fact�t� is further developed into:

∂ Fint�t�
∂ Fact�t�

�
∂ Fint�t�
∂ Xe�t�

∂ Xe�t�
∂ Fact�t�

�
∂ Fint�t�

∂ Ẋe�t�

∂ Ẋe�t�
∂ Fact�t�

�
∂ Fint�t�

∂ Ẍe�t�

∂ Ẍe�t�
∂ Fact�t�

� . . . . . (20)

For online Me learning, stiffness, viscosity, and inertia of
the contacted object must be measured accurately because
learning is conducted by converting force control error to
hand movement error. The model for the contacted ob-
ject must be identified. For this, we used the method
proposed by Tsuji et al. [12, 13], i.e., ∂ F int�t��∂ Xe�t�,
∂ Fint�t��∂ Ẋe�t�, and ∂ Fint�t��∂ Ẍe�t� correspond to stiff-
ness, viscosity, and inertia of the identified model of the
contacted object. ∂ Xe�t��∂ Fact�t�, ∂ Ẋe�t��∂ Fact�t�, and
∂ Ẍe�t��∂ Fact�t� are approximated using the same with a
sufficiently short sampling time.

3.3. Virtual Impedance Learning
Virtual impedance set between the manipulator hand

and contacted object entering the virtual sphere must be
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adjusted based on the movement of the contacted object.
Evaluation function Ev�t� used for Ko, Bo, and Mo learn-
ing, is constituted with valuables relating to the movement
of the hand and contacted object, i.e., position, velocity,
and acceleration. An evaluation function, for example, to
bring hand velocity closer to that of the contacted object
is configured using two velocities:

Ev�t� �
1
2

�
α��Xr��Ẋo�t�� Ẋe�t�

�2
. . . (21)

where α��Xr�� represents a gain function for smooth ve-
locity change of the contacted object, set appropriately
based on targeted tasks. ∂ Ev�t��∂ Fact�t� in Eq. (17) is
developed using Eq. (21):

∂ Ev�t�
∂ Fact�t�

�
∂ Ev�t�
∂ Xe�t�

∂ Xe�t�
∂ Fact�t�

�
∂ Ev�t�

∂ Ẋe�t�

∂ Ẋe�t�
∂ Fact�t�

�
∂ Ev�t�

∂ Ẍe�t�

∂ Ẍe�t�
∂ Fact�t�

� . . . . . . (22)

∂ Xe�t��∂ Fact�t�, ∂ Ẋe�t��∂ Fact�t�, and ∂ Ẍe�t��∂ Fact�t�
are also approximated as in Section 3.2, enabling online
learning for virtual impedance.

3.4. NN Configuration
Impedance is learned by NNs using the learning rules

above. We set the Force Control Network (FCN) to learn
M�1

e . FCN is a multilayer NN with input of hand position
Xe, hand velocity Ẋe, deviation dX between hand position
Xe and target hand position Xd , and deviation dX between
hand velocity Ẋe and target hand velocity Ẋd , and inter-
action Fint , with the output of modification value ∆M�1

e
of M�1

e . Fig. 3(a) shows the FCN. Note that FCN output
is modified ∆M�1

e , not M�1
e , because M�1

e with a certain
value is necessary for controlling the manipulator even
when it is in free motion, and that M�1

e is to be modified
to a appropriate value for controlling external force ap-
plied to the hand upon contact with the contacted object.

Learning of virtual impedance in Fig. 2 consists of
three NNs, i.e., a noncontact stiffness network (NCSN),
noncontact viscosity network (NCVN), and noncontact
inertia network (NCIN). These NNs have input of relative
position Xr, relative velocity Ẋr, and relative acceleration
Ẍr between the hand and contacted object, and interac-
tion Fint . The learning control configuration in Fig. 2 is
detailed in Fig. 4, and NCSN that output Ko is shown in
Fig. 3(b). NCVN and NCIN have configurations similar
to that of NCSN.

s
dXo

s

+

+ +Fo

Virtual stiffness

Virtual viscosity

Virtual inertia 2

Robot inertia

Ff

Fint

+
+

Xe

Fig. 4. Components of robot impedance and virtual impedance.

Each NN uses linear output functions in the input layer,
and sigmoid functions in the middle and output layers.
When each unit number is i � �1�2� � � �� and j � �1�2� � � ��
(where j � i), and the input and output of units are xi and
yi, they become:

xi �

�
Ii �input layer�

∑wi jy j �middle and output layers� . (23)

yi �

������
�����

xi �input layer�

1
1� e�xi

�middle layer�

U
2

�1� e�xi�θ

1� e�xi�θ

�
�output layer�

. . (24)

where Ii represents an input of NN, wi j a weighting factor
from unit j to unit I, and U � 0 and θ � 0 a maximum
value and threshold of network output.

4. Experiment Results

Simulation results confirmed the feasibility of manipu-
lator operation with the above two impedance parameters
in online learning.

For simulation, each length of manipulator links was:
l � �l1� l2� l3� � �0�30�0�25�0�27� [m], and the initial
joint angle was θ � �θ1�θ2�θ3� � �π�2�π�9�7π�18�
[rad]. For initial manipulator hand impedance values:
Ke � diag�500�500�500� [N/m], Be � diag�250�250�250�
[Ns/m], Me � diag�10�10�10� [kg], and radius of the vir-
tual sphere centered on the hand was r � 0�2 m. The sam-
pling frequency was set to 1 kHz, considering a control
experiment with a real machine.

4.1. Catching Task

The catching task involves receiving the contacted ob-
ject approaching the manipulator hand from the outside
without bouncing against it (Fig. 5). The contacted object
is a ball at the end of a pendulum hung from the ceil-
ing. To receive the contacted object, force applied to the
hand or the contacted object upon contact must be small to
contain the reaction, and the velocity of the hand must be
close to that of the contacted object before contact to min-
imize relative velocity. We applied the evaluation function
of Eq. (21) to NNs to adjust virtual impedance parameters
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for this task, and set gain function α��X r�� as follows:

α��Xr�� �

��
�

1� sin
���Xr��Rb�π

2�r�Rb�

�
��Xr� � Rb�

0 ��Xr�� Rb�

(25)

where r and Rb represent radii of the virtual sphere and
contacted object. The change of α��X r�� is shown in
Fig. 6. For the evaluation function for learning hand
impedance Me, we used Eq. (18).

NNs used for learning have a 4-layer structure, each
of which has 4 units in the input layer, 10 in the 2 middle
layers, and 1 in the output layer. The initial weighting fac-
tors were provided with uniform random numbers �wi j��
0�05. The FCN learning ratio was η f � 0�0019, NCSN
learning ratio ηp � 0�5, NCVN learning ratio ηv � 0�1,
and NCIN learning ratio ηa � 0�0001. The target inter-
action was set to Fd � diag�0�0��0�5�0�0� [N], and the
weight of the contacted object was Mb � 0�5 kg.

Figure 7(a) shows behaviors of hand and contacted
object, Fig. 7(b) interaction by contact, Fig. 7(c) hand
impedance Me, and Figs. 7(d) to (f) time change (all to-
ward the Y axis) of virtual impedance Ko, Bo, and Mo.
Koy, Boy, and Moy increased because it was necessary

to move the hand for approaching the contacted object
(Figs. 7(d) to (f)). When the contacted object contacted
the hand, Mey decreased to reduce external force. In the
figure, Mey decreased once but gradually increased be-
cause interaction was less than a predetermined target
when it became stationary after contact between the hand
and contacted object, bringing the value closer to the tar-
get.

We confirmed with these results that both virtual
impedance and hand impedance Mey adjusted during oper-
ation. Mey was learned by contact of the contacted object
with the hand, and we studied the influence on learning
when properties of the contacted object changed. Fig. 8
shows changes in hand impedance Mey in the direction
of Y axis when weight Mb of the contacted object, was
changed in catching tasks. The NN learning ratio for
learning Mey is fixed, so the greater the external force on
the hand, the greater the change in Mey to contain exter-
nal force. As the weight of the contacted object increases,
Mey decreases (Fig. 8). External force generally increases
with the weight of the contacted object. We confirmed
that Mey was learned based on the weight of the contacted
object.
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4.2. Tracking Task

Catching tasks generate large external force on the hand
for very short times. We verified performance with a
tracking task in which a certain force is applied for a long
time. Tracking is a task that, when there is a wall on the
trajectory of the hand in free motion in space, traces the
surface of the wall so that it does not apply excessive force
upon contact (Fig. 9).

We studied a task in which the manipulator hand is pro-
grammed with a target trajectory to rotate counterclock-
wise for one turn for 8 s on a circle of 0.2 m in radius
(Fig. 9(b)), and the manipulator traces the wall [12, 13].
Executing this task involves a strategy in which the ve-
locity of the hand is reduced before contact, and exter-
nal force on the hand is controlled to approach the target
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Rb rr
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Relative position, |Xr(t)| [m]

(|
X
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t)

|)
 

Fig. 10. A gain function of tracing task.

(Fd � 0 N) after contact. We apply the same evaluation
function for Me learning, i.e., Eq. (18), used in the catch-
ing task, and the evaluation function to learn K o, Bo, and
Mo:

Ev�t� �
1
2

�
α��Xr��Ẋe�tc�� Ẋe�t�

�2
. . (26)

where Xe�tc� is the velocity of the hand at moment (t � tc)
when the virtual sphere entered the wall, and α��X r�� rep-
resents a gain function that smoothly changes the target
velocity of the hand based on relative distance X r between
the hand and wall. The gain

function used in this study is:

α��Xr�� �

��
�

sin
���Xr��π

2r

�
��Xr� � Rb�

0 ��Xr�� Rb��
(27)

Fig. 10shows a change of α��X r��.
In simulation, wall viscoelasticity was set to: Kc �

diag�0�10000� [N/m], Bc � diag�0�20� [Ns/m], and Mc �
diag�0�0�1� [kg], and the target time trajectory of the hand
given by a polynomial of degree 5 [15]. As in the catching
task, 4-layer NNs were used for learning, and learning ra-
tios were set to η f � 0�05 for FCN, ηp � 0�15 for NCSN,
ηv � 0�1 for NCVN, and ηa � 0�0001 for NCIN. The tar-
get interaction was set to Fd � diag�0�0�0�001�0�0� [N].

Figure 11(a)shows position changes of the hand dur-
ing tracking, Fig. 11(b) shows interactions with and
without learning in comparison, Fig. 11(c) shows hand
impedance Me, and Figs. 11(d)to (f) show time changes
in virtual impedance Ko, Bo, and Mo (all in the direction
of the Y axis). As shown in Figs. 11(d) to (f), virtual
impedance Koy, Boy, and Moy started changing when the
virtual sphere at the hand contacted with the wall, so vir-
tual force Foy was applied to the hand to reduce the veloc-
ity of the hand before contact. Virtual impedance started
changing again from 6 s because learning was conducted
to reduce the velocity of the hand when the hand, contact-
ing the wall, started to leave it. When the hand returns,
there is no need to contain hand velocity, so no virtual
external force is applied even if parameters are learned.
After contact, external force on hand is reduced by low-
ering hand impedance Mey. Although we applied a con-
stant sampling time interval to this simulation, the interval
may be automatically adjusted to shorter upon detecting a
rapid change in the interaction, which may make a track-
ing task smoother.

As started, we achieved manipulator operation by con-
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Fig. 11. Experimental results of the tracing task.

tacted objectives simultaneously adjusting hand and vir-
tual impedance.

5. Conclusions

We have proposed simultaneously adjusting both hand
and virtual impedance, studied little up to now. We
demonstrated that impedance parameters are adjusted ap-
propriately, enabling efficient operation taking advantages
of both impedance controls. We will continue to study
suitable NN configurations and setups for learning param-
eters, and will conduct verification with a real machine.
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