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We propose a human interface for video game oper-
ation using voluntarily generated biological signals as
input. The users choose specific input signals and con-
figure signal measurement based on preferences, phys-
ical condition (disabled or not), and degree of disabil-
ity. Based on input signals, the intended user opera-
tions are estimated with a probabilistic neural network
(PNN), and then control commands are determined.
Our proposed interface enables individuals even with
severe physical disabilities to maneuver video games.
Experiments confirmed the feasibility of our designed
interface by subjects suffering from cervical spine in-

jury.
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1. Introduction

Amusement equipments, such as TV games, radio-
controlled devices, and entertainment robots being oper-
ated using pushbutton switches and joysticks may be dif-
ficult to use for physically disabled people, such as am-
putees. With the annually growing number of physically
disabled people in Japan [1], barrier-free environments
are necessary for these people to enjoy the same leisure
in life as those without disabilities.

As regards the studies on interfaces for the physically
disabled, Suzuki et al. [2] developed a large, easy-to-
operate pushbutton interface and input manipulated by
shifting the user’s weight during TV games. Lopes [3]
proposed an interface using an input button operated by
the extremities. Users without such potential limb use,
such as those suffering from cervical spine injury or amy-
otrophic lateral sclerosis, cannot enjoy such games, how-
ever.

Biological signals interpreted from tracings of the elec-
tromyogram (EMG) and electroencephalogram (EEG) re-
flect internal conditions of the human body and intention
of body movements. If a movement can be estimated by
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biological signals, the latter could be substitute for limb
use. Other related studies have been done on the con-
trol of the external environment and the artificial throat,
as well [4, 5].

Implementing biological signals in amusement equip-
ments could enable an interface practical, regardless of
the presence of physical disability. In working with such
interfaces, Iga et al. [6] developed a computer game, op-
erated by inhalation and exhalation as determined by the
breath analysis. Betke [7], Lin et al. [8] used the posi-
tioning of the eye as measured by a camera, and Krepki
[9] estimated a user’s intent from the EEG signals in or-
der to operate a PC pointer for a simple computer game.
In the utilization of such equipments, the user should be
provided with choices of operation method. Interfaces do
not generally adapt to the user’s needs, however, and may
require considerable training. Also, further development
usually targets particular equipment and computer games
that do not correspond to ordinary home game machine
operation.

In this paper, we propose a human interface using bi-
ological signals for the operation of game machines by
the seriously disabled. In this system, input of multiple
signals is possible, and based on the degree of disability
and preference, a signal can be selected and measured.
By means of a probabilistic neural network (PNN) [10]
to learn and discriminate the measured signal, individual
user variations can be adapted and the position of the in-
put signal changed. Moreover, the hardware for control-
ling the interface and game machines is re-configurable
allowing hassle-free addition and alteration of the equip-
ments. A single interface, thus, permits operation of dif-
ferent game machines.

This paper is organized as follows. Section 2 discusses
the proposed interface, section 3 explains the prototype
developed, section 4 describes the details of the experi-
ments, and section 5 presents the conclusions.

2. Human Interface for Game Control

The human interface we proposed (Fig.1) consists of
four blocks, which signify the input signal processor, in-
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Fig. 1. Concept of the proposed human interface for game
control.

tention estimation, command decision, and signal con-
verter. We focus on games in which the user takes time to
select operator commands, such as role-playing and table
games. The subsections that follow explain the individual
components of the interface.

2.1. Input Signal Processor

Biological signals such as EMG signals, exhalation,
and acceleration (ACC) signals generated by body move-
ments are measured by appropriate selection of the user’s
ability. In this study, EMG and joint angle signals were
employed, although any biological signal produced by
voluntary actions can be used similarly.

Feature extraction against a measured biological signal
derives the information for estimating the intended oper-
ation. Information interpreted from the biological signal
differs with the type of signal and intended operation, so
feature extraction is required based on the purpose. The
input signal processor conducts feature extraction based
on the biological signal and intended operation, and trans-
forms the signal to a feature vector that uses signal char-
acteristics [11]. The biological signal and measuring po-
sition acted upon by the user are selected for input to the
interface.

2.2. Intention Estimation

After feature extraction, the PNN estimates the in-
tended operation from the biological signals. The PNN,
which is a type of statistical pattern recognition based on
the Bayesian discrimination theorem, introduces a prob-
ability model into a neural network, so posterior proba-
bility can be estimated for given input patterns [10]. Be-
cause the network discriminates well in pattern recogni-
tion, the movement of the user can be recognized from the
biological signal as posterior probability of each move-
ment. Through learning, the PNN distinguishes the sig-
nal patterns with individual difterences and the lag in its
measurement, enabling precise pattern recognition. Even
when the type of biological signal changes based on the
alteration in the user’s movement, the pattern can be dis-
criminated well through learning, so that multiple biolog-
ical signals can be integrated and handled simultaneously.

2.3. Command Decision

Movement of the user k (k = 1,2,...,K) identified
through the intention estimation allocates operator com-
mand ¢; (i=1,2,...,C) of the game machine to the com-
mand decision. K denotes the number of movements es-
timated by the user, and C denotes the command required
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for operating the game machine. Depending on the game
machine, the required total number of C differs. When
the number of K exceeds the total number of C, the cor-
responding estimated movement k with command ¢, en-
ables the user to directly execute commands using indi-
vidual movements. In addition, depending on the user’s
physical abilities, the number of K precisely calculated
by intention estimation may be smaller than C. To oper-
ate game machines regardless of disability requires a com-
mand decision that executes all commands, even when the
number of possible movement is small.

Considering the case when the number of K of move-
ment is smaller than the number of C of command re-
quired for operating the equipment, the operator com-
mands are grouped. By changing groups and commands
using K movements, the user executes all commands with
fewer movements. Explanations below are based on this
idea.

When number K of the user’s movements and the re-
quired number of commands are given, divide all com-
mands into (K — 1) groups each (K > 2). The number G
of the group becomes

G=cel[C/(K-1)]. . . . .. .. ...

ceil[x] is a function giving the minimum integer equal to
or larger than real number x. The commands included
in the group are freely configurable by the user. The
user configures the commands in-line, e.g., increasing the
number of commands based on the game machine in or-
der to configure the same command for multiple groups.
Using the remaining one of K movements allotted to each
group, the group is changed.

Based on the above explanation, the user changes
groups and selects commands by repeating K movements.
When the user executes only one movement (K = 1), the
system continues to select commands at predetermined in-
terval 7, [s]. The user executes command by conducting
the movement when the command is selected. The user
thus, executes a required command regardless of the num-
ber of K.

2.4. Signal Converter

The operation command is sent to the game machine as
a digital signal from the signal converter. Since the com-
munication protocol of the game machine differs with the
machine, it must be changed as needed. The signal con-
verter is configured as a field-programmable gate array
(FPGA) for easy reconstruction of the circuit. The FPGA,
which is a large-scale integrated circuit (LSI), electrically
reconfigures the internal circuit by rewriting the program.
Less time is spent to develop the transformed signal than
through an application-specific integrated circuit (ASIC),
allowing redesign of the program. By configuring the sig-
nal converter on the FPGA, the circuit is reconfigured as
necessary, and it is possible to add and change the game
machine.

The signal converter implements a generation of con-
trol signal corresponding to the command decision. The
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Fig. 2. Prototype of the proposed human interface for game control.

generation circuit uses a look-up table (LUT) to store the
control signals in memory in advance, to match the se-
lected commands to the address in memory, and to gen-
erate the required signal. When changing the game ma-
chine, simply rewriting to the LUT circuit memory cre-
ates an arbitrary control signal. By changing the commu-
nication circuit in-line with the required communication
protocol, a single interface can control multiple game ma-
chines.

3. Prototype Development

The prototype we developed employs EMG signals
and joint angle signals as input signal and PlayStation 2
(Sony Computer Entertainment Inc., PS2) for the oper-
ation (Fig.2). Ag/AgCl bioelectrodes (Yokogawa Elec-
tric Corporation) and small electromyograph (OE-BR-T-
4001, Oisaka Development Ltd.) are used to measure the
EMG signals, while shape sensor (S720, Measurand Inc.)
measures the joint angle signals. The shape sensor con-
sists of urethane-covered fiber-optic plastic, so when mea-
suring, the bending direction of the sensor and its curva-
ture are calculated by the amount of light lost from the
sensor [13].

With the operation using EMG signals, feature extrac-
tion is performed in the input signal processor as follows.
Fuli-wave rectification for EMG signals as measured by
L-channels sensor and smoothed using a second low-pass
filter whose cut off frequency is 2Hz, EMG,(t) (I =1.....
L) is carried out. The normalized signals, which make
the sum of all channels 1, are made into input vector
x(1) =[x, (1) x,(1).... ,xL(t)]T of time ¢, and are used for
pattern recognition. Each vector element then becomes

EMG,(t) — EMGY

7 (2)
Z] (EMG,(t) — EMG))
I'=

x[(t)

where EMGY' is the average of the EMG,(t) measured at
rest. The user’s force information for input vector x(t) is
defined as

| & EMG) (1) —EMGY

- N &
L,; EMGI“ — EMG )

Fpyglt) =
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where EMG™ is the average of EMG,(t) at maximum
voluntary contraction of the muscle. By comparing
Fepo(t) and threshold M, of the movement occurrence
decision, we can determine the timing of movement oc-
currence. When F,, . -(t) exceeds M,, movement is esti-
mated from input vector x(#) using the PNN.

On the other hand, when using the joint angle signals,
the signals are measured by the sensor, SHP,(t), and are
normalized so the maximum of each channel is 1 and the
minimum 0.

Each element of the vector becomes

SHP,(t) — SHP™™"
= SHP[maX . SHP[min

x,(1) - @
where SHP™* and SHP™" are the maximum and mini-
mum measured signals, respectively. Energy information
for the joint angle signals is defined as

Pgp(t) = % |x, (1) = x' . (5
where x)' is the average of the input vectors measured at
rest. As for the EMG signals, when P, (1) exceeds M,
movement has occurred and the PNN estimates the user’s
movement.

In intention estimation, the biological signal pattern
is recognized by using a log-linearized gaussian mixture
network (LLGMN) [11] proposed by Tsuji et al. as the
PNN. This network includes a Gaussian mixture model,
which is a type of statistical model, and posterior proba-
bility is estimated by learning. Through this learning abil-
ity, biological signals, such as EMG signals, are discrimi-
nated precisely [5].

The entropy is calculated from the LLGMN output and
discrimination is then determined [12]. Since the output
O, (t) of the LLGMN represents posterior probability for
each movement k (k = 1.2,...,K), entropy is defined by
the following equation, which shows the obscurity of in-
formation:

O,(t)logO,(1). (6)
If E(t) is smaller than discrimination determination
threshold E,, the movement with the highest posterior
probability is the result of discrimination. Otherwise, if
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E(t) exceeds E,, discrimination is suspended as obscure
movement. To prevent incorrect movement, movement
confirmation threshold Oy, is introduced. When a contin-
uous discrimination number of discriminated movement
k exceeds Oy, k is confirmed as movement and the com-
mand is selected at the command decision.

The signal converter is designed using an evaluation
board (Xtreme DSP Development Kit-II, Nallatech), on
which the FPGA (XCV3000-4FG676, Xilinx Inc.) is
mounted and the circuit is described using Verilog-HDL.
The operating frequency is 2.5MHz, and the control sig-
nal bit width stored in memory is 16bits. The LUT and
communication circuits are implemented based on the
communication protocol of the PS2, which the user op-
erates by using the EMG and joint angle signals.

4. Experiments

4.1. Procedure

To verity the validity of the proposed interface, we con-
ducted experiments using the prototype. Six subjects clas-
sified as A to F consented to the study. Subjects A and
B are males aged 46 and 51 years old, respectively, who
have cervical spine injury, whereas subjects C to F are
healthy 22 year-old males. Subject A, who was injured
at the fourth cervical spine, has function C4 and an ADL
total assistance level caused by quadriplegia. Subject B,
who was injured at the fifth cervical spine, has function
C5, which is ADL total assistance level due to quadriple-
gia. Since subjects A and B could not move freely from
the neck down, they could not operate the game via a con-
ventional interface.

Because all subjects could maneuver the game, oper-
ation was conducted using biological signals measured
from the sensors placed on the facial surface. We mea-
sured the EMG signals at the left and right depressor an-
guli oris muscles, whereas the joint angle signals were
determined at the left and right zygomatic regions (Fig.3),
and from two channel (L = 2) sensors.

The movements were right lateral muscle contraction,
left lateral muscle contraction, and both lateral muscle
contractions for the EMG signals. The three movements
for the joint angle signals were right eye closure, left
eye closure, and both eyes closure (K = 3). The sensor
and movement were decided during the preparatory ex-
periments conducted in advance, so subjects were able to
operate the game easily, although they were modifiable
based on the degree of disability. The game employed
for the experiment was Othello (SUCCESS Corporation).
There were 5 (C = 5) operation commands for Othello,
i.e., they were the four directions of left, right, up, and
down and a decision command for placing the stones.

For Eq.(1), the minimum number of groups was G = 3.
Changing the group by commands, which are configured
in each group, was decided based on Fig.4.

The experiment was conducted in an ordinary computer
room at room temperature of about 20 to 25 deg Centi-
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Fig. 5. Photos of the patient with cervical spine injury and
the developed.

grade. Subjects A and B used electric wheelchairs. Sub-
ject A carried out the experiment wearing a respirator due
to a tracheotomy. Consent of the subjects was obtained,
who received detailed explanations of the purpose and
content in advance. Each subject conducted the experi-
ment after being trained several minutes prior to the start
of the experiment.

For LLGMN learning, 20 sets of signals for each move-
ment were randomly selected from the pretreatment for
biological signals of each objective movement and sub-
sequent feature extraction, for a total of 60 sets of pat-
terns as teaching signals. The discrimination determina-
tion threshold was £, = 0.1, which made manipulation
easy for the subject in the preparatory experiment. For
the decision for £, detailed investigations will be given
in future studies.

Figure 5 shows (a) a subject suffering from a cervical
spine injury wearing shape sensors, (b) prototype, and (c)
operation scene using the prototype. Since the proposed
system realized game operation through the generated bi-
ological signals of the user, severely handicapped people
could benefit from the equipment.
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4.2. Operation Experiment

The experiment with the game was conducted by sub-
ject A, in which EMG signals were utilized. The in-
struction was given to move along the route as presented
in Fig.6, and the threshold M, = 0.2 of the movement
occurrence decision and movement confirmation thresh-
old Oy, = 30 were noted. An example of the result of
the operation is shown in Fig.7. The figure shows, from
top to bottom, a full-wave rectification, EMG signals af-
ter smoothing, force information Fp,,(f), discrimination
results, selected commands, and the performance of the
game (shaded area). In discrimination results, an interval
was defined as No Motion (NM) when no motion hap-
pened.

Although discrimination errors were confirmed, they
were not judged as movements (refer to section 3) since
the continuous discrimination number exceeded Oy,. The
experiment confirmed that required commands were se-
lectable by facial movement alone, and the game pro-
ceeded based on instructions.

An example of the experiment by subject B is shown
in Fig.8. Subject B had strong paralysis on the left side,
and since game operation was difficult with respect to
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contraction of the left depressor anguli oris muscle, the
joint angle signals were used as input signal. The subject
was told to move along the route in Fig.6 and M, = 0.3
and Oy, = 30 were noted. The figure shows, from top to
bottom, joint angle signals, energy information Py p(t),
discrimination results, and selected commands. The fig-
ure confirmed that required commands were selectable by
facial movement alone similar to the result drawn from
the EMG signals. Therefore, when the biological signal
changed based on the degree of disability through feature
extraction on intention estimation and PNN, the game was
done based on instructions.

The operation times are shown in Fig.9, when the
movement confirmation threshold O, was changed. The
vertical axis was the average of operation time for five tri-
als. Oy, was set at 10, 20, and 30, and the route in Fig.6
was instructed to six subjects. Subject B chose the joint
angle signals for input while the other subjects selected
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the EMG signals. In the experiment, the execution time
was measured thus, each subject was instructed to finish
as soon as possible.

We discovered the increase in variation in the opera-
tion time by reducing Oy,. For each Oy, the most time-
consuming trajectory of the trial operation is shown in
Fig.10. We confirmed that when O, was small, opera-
tion on the instructed route became difficult and the num-
ber of overshoots rose. By making O, large, the opera-
tion was achieved based on the instruction. Furthermore,
a stable operation time was obtained at Oy, = 30 for both
non-handicapped and disabled people. By choosing the
appropriate O, stable operation with a small variation in
operation times is possible.

By successively increasing Oy, from 1 to 35, we stud-
ied successful task performance. The result is shown in
Fig.11, where the horizontal axis is Oy, vertical axis is
the average task success rate, and subject C.

Average task success rate I, represents the ratio of the
number of input commands versus the number of com-
mands required for the task, as defined by the following
equation:

lyye=—> . . . . . . ... .. ... 7
A N, N

where N, corresponds to the number of commands re-
quired for the task and N, to the number of commands that
the subject actually input. For example, in moving along
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the route in Fig.6, the number of commands required for
changing the group and the movement of the cursor, N, is
10.

When Op, was 1 to 10, the success rate was 20% to
40%, however, with increasing Oy, the success rate rose
to be approximately 100% at the vicinity of O, = 30.
We thus confirmed that O, = 30 was desirable for the
conduction of a stable task.

Four tasks (Fig.12) were instructed to each subject and
the execution time of each task was measured. Tasks 1,
2, and 3 were movements of the cursor from the initial
to final position based on a designated route, and task 4
was placing stones at moved positions. Each task was
conducted 5 times and Oy, = 30 was determined.

The average operation time of each subject is shown
in Fig.13. A small variation in the result of tasks [, 2,
and 3 was obtained resulting in a stable operation. For
task 4, the variation by subject A was large because an
input error occurred for the command in one of five trials
and the operation time was longer. For the remaining four
trials, operations were conducted as for the other subjects.

The task success ratio (Eq.(7)) of each subject is shown
in Table 1. From the table, we confirmed that all sub-
jects had high success ratio as a whole. As the number of
commands required for the task and the distance moved
increase, operation time for each subject became longer
although the operation was conducted as instructed.
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Table 1. Success rates in each task: mean values and stan-
dard deviations for 5 trials.

Sub.| Taskl Task 2 Task 3 Task 4

98.6+3.78 1 100.0 £ 0.0 |100.0+£0.092.3+14.52
100.0£0.0 | 100.0£0.0 |100.0+0.0| 97.6 + 6.30
100.0 £0.0 | 100.0+0.0 [100.0+£0.0 | 97.6 + 6.30
94.8 £8.87 | 100.0 0.0 [100.0+0.0| 97.6 + 6.30
100.0£0.0 | 100.0£0.0 |100.0 £ 0.0 | 95.2 +£8.13
98.6 £3.78 | 100.0 £ 0.0 | 100.0 £ 0.0 | 100.0 £0.0

Mean £ S. D. [%]

om0 |w| >

5. Conclusions

In this paper, we proposed a novel human interface us-
ing biological signals to enable the operation of game ma-
chines by the physically disabled. The input of the method
is gathered from multiple signals which are biological sig-
nals the user voluntarily controls. Hence, many users can
use the interface by appropriately selecting the input sig-
nal based on the degree of disability and so on.

At present, EMG, joint angle, and ACC signals are sup-
ported by the system. Through adaptive learning by the
PNN, the change in measuring position of the biological
signals and individual variation of the users do not bring
any difficulties and user movement can be precisely es-
timated. By using the FPGA, which is a reconfigurable
hardware, it is possible to add and alter the game machine.

With the EMG and joint angle signals as input signal,
and the PS2 as the object of operation, the prototype was
developed and experiments conducted. Experiments con-
firmed that subjects suffering from cervical spine injury
could operate the game as instructed. We also demon-
strated that by appropriately setting the movement confir-
mation threshold O, a stable game operation could result
with only a small variation in the operation time.

Nevertheless, problems can still happen when operat-
ing the game, such as the effect when changing the game
and fatigue upon prolonged use of the interface.

In the future, we plan to study the performance of the
interface for operation of the game with a bigger popula-
tion of subjects. Since available biological signals are few,
we also plan to increase the signals that can be employed
for input. Moreover, in order to expand the number of
games controlled by the interface, we will conduct further
study on a reduced operation time and enhanced system
operation speed.
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