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LMI-Based Neurocontroller for State-Feedback Guaranteed Cost
Control of Discrete-Time Uncertain System
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SUMMARY The application of neural networks to the state-feedback
guaranteed cost control problem of discrete-time system that has uncer-
tainty in both state and input matrices is investigated. Based on the Linear
Matrix Inequality (LMI) design, a class of a state feedback controller is
newly established, and sufficient conditions for the existence of guaranteed
cost controller are derived. The novel contribution is that the neurocon-
troller is substituted for the additive gain perturbations. It is newly shown
that although the neurocontroller is included in the discrete-time uncertain
system, the robust stability for the closed-loop system and the reduction of
the cost are attained.
key words: guaranteed cost control, additive gain perturbations, neural
networks, LMI

1. Introduction

In recent years, the problem of robust control for the
discrete-time system with parameter uncertainties has been
studied (see e.g., [1] and reference therein). In these studies,
much effort has been made towards finding a controller that
guarantees robust stability. However, it is very important to
take into account not only the robust stability but also an
adequate cost performance. One approach to this problem
is the so-called guaranteed cost control approach [3]. This
approach has the advantage of providing an upper bound on
a given performance index. The guaranteed cost control for
the uncertain discrete-time system by means of the output
feedback control has been discussed in [4]. On the other
hand, recent advance in theory of Linear Matrix Inequality
(LMI) has allowed a revisiting of the guaranteed cost con-
trol approach. The guaranteed cost control problem for a
class of the uncertain discrete-time system which is based
on the LMI design approach was solved by using the state
feedback [2]. Very recently, the LMI-based guaranteed cost
stabilization for the uncertain discrete-time large-scale sys-
tems has been discussed [5], [6]. However, due to the pres-
ence of the design parameter of the LMI conditions, it is
well-known that the cost becomes quite large.

A neural network (NN) has been actively exploited to
construct an intelligent control system because of its non-
linear mapping approximation for the system uncertainties
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involved. Then some control methodologies utilizing NN
have been proposed by combining the modern control the-
ory. For example, the adaptive controller using NN was de-
signed within the framework of the adaptive control theory
in the literature [7]. The feedback control systems in which
NN were placed instead of a conventional controller [8] or
in parallel [9] for identifying and canceling the plant uncer-
tainties have been proposed. As important studies in partic-
ular, the Linear Quadratic Regulator (LQR) problem using
the multiple NN has been investigated [10]. In these ap-
proaches, one neural network is dedicated to the forward
model for identifying the uncertainties of the controlled
plant, and the other network may compensate for the in-
fluence of the uncertainties based on the trained forward
model. However, in these researches, there is a possibility
that the existing neurocontroller may not stabilize the plant
because the stability of the closed-loop system which in-
cludes the neurocontroller has not been considered. In fact,
it has been shown that the system stability is destroyed when
the degree of system nonlinearity is strong [10]. In order to
avoid this problem, the stability of the closed-loop system
with the neurocontroller has been studied via the LMI-based
design approach [14], [15]. However, in these researches,
the uncertainty in the input matrix has not been considered.

In this paper, the guaranteed cost control problem of
the discrete-time uncertain system that has uncertainty in
both state and input matrices is discussed. A class of the
fixed state feedback controller of the discrete-time uncer-
tain system with the gain perturbations is newly established
by means of the Linear Matrix Inequality (LMI). In order
to reduce the large cost caused by the guaranteed cost con-
trol, NN is used. A new idea is that the neurocontroller is
substituted for the additive gain perturbations. As a result,
although the neurocontroller is included in the discrete-time
uncertain system, the robust stability of the closed-loop sys-
tem and the reduction of the cost are attained. It should be
noted that there is no result for the stability of the closed-
loop system which includes the neurocontroller so far. Fi-
nally, in order to demonstrate the efficiency of our design
approach, the numerical example is given.

2. Preliminary

Consider the following class of an uncertain discrete-time
linear system with additive gain perturbations:
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Fig. 1 Block diagram of a new proposed method.

x(k + 1) = [A + DF(k)Ea] x(k)

+ [B + DF(k)Eb] u(k), x(0) = x0, (1a)

u(k) = [K + DkN(k)Ek] x(k), (1b)

where x(k) ∈ �n is the state, u(k) ∈ �m is the control input,
A, B, D, Dk, Ea, Eb and Ek are known constant matrices, K
is the fixed control matrix for the controller (1b), and F(k) ∈
�pa×qa is unknown matrix function and N(k) ∈ �pn×qn is the
output of NN. Without loss of generality, it is assumed that
F(k) and N(k) satisfy

FT (k)F(k) ≤ Iqa , NT (k)N(k) ≤ Iqn . (2)

These conditions seem to be conservative, while it is possi-
ble to establish the LMI condition (8) that will appear later
as the sufficient condition.

In this paper, the controlled plant class is an uncertain
discrete-time linear system with additive gain perturbations.
Namely, the controlled plant class such that the obtained
LMI condition holds is considered for the existence of con-
trol matrix K. On the other hand, the matching conditions
(2) are assumed. It should be noted that N(k) is not systems
uncertainty but the output of NN. It should also be noted
that these conditions are less conservative under the study
of the uncertain discrete-time systems because such condi-
tions are based on the control-oriented assumption that are
made in the existing results [1], [2], [4]–[6].

The block diagram of the new proposed method is
shown in Fig. 1, where L is a time lag. It should be noted
that the controller (1b) has the neurocontroller as the ad-
ditive gain perturbations DkN(k)Ek compared to existing
method [10].

Associated with the system (1) is the quadratic cost
function

J =
∞∑

k=0

[
xT (k)Qx(k) + uT (k)Ru(k)

]
, (3)

where Q and R are given as the positive definite symmetric
matrices. In this situation, the definition of the guaranteed
cost control with the additive gain perturbations is given be-
low.

Definition 1: For the discrete-time uncertain system (1)
and the cost function (3), if there exist a control matrix K
and a positive scalar J∗ such that for the admissible uncer-
tainties and the neurocontroller (2), the closed-loop system
is asymptotically stable and the closed-loop value of the cost
function (3) satisfies J < J∗, then J∗ and K are said to be the
guaranteed cost and the guaranteed cost control matrix, re-
spectively.

The above definition is very popular for dealing with
the time-varying uncertainties and is also used in [3].

It should be noted that if the controller (1b) is the guar-
anteed cost control, then it is also the quadratically stabiliz-
ing controller. Conversely, it can be easily shown that the
quadratically stabilizing controller will achieve the guaran-
teed cost. The following result shows that the guaranteed
cost control for the system (1) has the upper bound on the
cost function (3).

Lemma 1: Suppose that the following matrix inequality
holds for the uncertain discrete-time system (1) with the cost
function (3) and for all x(k) � 0.

xT (k + 1)Px(k + 1) − xT (k)Px(k)

+xT (k)[Q + K̃T RK̃]x(k) < 0, (4)

where K̃ := K + DkN(k)Ek.
If such condition is met, the matrix K of the controller

(1b) is the guaranteed cost control matrix associated with the
cost function (3). That is, the closed-loop uncertain system

x(k + 1)

= [(A + DF(k)Ea)

+(B + DF(k)Eb) · (K + DkN(k)Ek)]x(k), (5)

is stable and achieves

J < J∗ = xT (0)Px(0). (6)

Proof: Let us define the following Lyapunov function
candidate

V(x(k)) = xT (k)Px(k), (7)

where P is the positive definite matrix. Since this proof can
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

−X [AX + BY]T YT 0 [EaX]T
[
ET

b Y
]T

X
AX + BY −X + (µ1 + µ2)DDT BDkDT

k BDk 0 0 0

Y
[
BDkDT

k

]T −R−1 + DkDT
k 0

[
EbDkDT

k

]T
0 0

0 [BDk]T 0 −Ipn [EbDk]T 0 0
EaX 0 EbDkDT

k EbDk −µ1Iqa 0 0
EbY 0 0 0 0 −µ2Iqa 0

X 0 0 0 0 0 −(Q + ET
k Ek)−1



< 0. (8)



−P [A + BK]T KT 0 ET
a

[
ET

b K
]T

In

A + BK −P−1 + (µ1 + µ2)DDT BDkDT
k BDk 0 0 0

K
[
BDkDT

k

]T −R−1 + DkDT
k 0

[
EbDkDT

k

]T
0 0

0 [BDk]T 0 −Ipn [EbDk]T 0 0
Ea 0 EbDkDT

k EbDk −µ1Iqa 0 0
EbK 0 0 0 0 −µ2Iqa 0

In 0 0 0 0 0 −(Q + ET
k Ek)−1



< 0,

⇔ L :=



−P + Q + ET
k Ek + µ

−1
2

[
ET

b K
]T

EbK [A + BK]T KT 0 ET
a

A + BK −P−1 + µ1DDT + µ2DDT BDkDT
k BDk 0

K
[
BDk DT

k

]T −R−1 + DkDT
k 0

[
EbDkDT

k

]T
0 [BDk]T 0 −Ipn [EbDk]T

Ea 0 EbDkDT
k EbDk −µ1Iqa


< 0. (9)

M1 =



−P + Q + ET
k Ek [(A + ∆A) + (B + ∆B)K]T KT 0

(A + ∆A) + (B + ∆B)K −P−1 (B + ∆B)DkDT
k (B + ∆B)Dk

K
[
(B + ∆B)DkDT

k

]T −R−1 + DkDT
k 0

0 [(B + ∆B)Dk]T 0 −Ipn



=



−P + Q + ET
k Ek [A + BK]T KT 0

A + BK −P−1 BDkDT
k BDk

K
[
BDkDT

k

]T −R−1 + DkDT
k 0

0 [BDk]T 0 −Ipn



+


0
D
0
0

 F(k)
[

Ea 0 EbDkDT
k EbDk

]
+



ET
a

0[
EbDkDT

k

]T
[EbDk]T


FT (k)

[
0 DT 0 0

]

+


0
D
0
0

 F(k)
[

EbK 0 0 0
]
+


[EbK]T

0
0
0

 FT (k)
[

0 DT 0 0
]

≤



−P + Q + ET
k Ek [A + BK]T KT 0

A + BK −P−1 BDkDT
k BDk

K
[
BDkDT

k

]T −R−1 + DkDT
k 0

0 [BDk]T 0 −Ipn



+µ1


0
D
0
0


[

0 DT 0 0
]
+ µ−1

1



ET
a

0[
EbDkDT

k

]T
[EbDk]T


[

Ea 0 EbDkDT
k EbDk

]

+µ2


0
D
0
0


[

0 DT 0 0
]
+ µ−1

2


[EbK]T

0
0
0


[

EbK 0 0 0
]
= M2 . (10)

be done by using the similar technique in [11], it is omitted.
�

The objective of this section is to design the fixed guar-
anteed cost control matrix K for the discrete-time system
(1).

Theorem 1: Consider the uncertain discrete-time system

(1) and cost function (3). For the uncertain matrix F(k) and
the output of NN N(k), if the LMI (8) has a feasible solution
such as the symmetric positive definite matrix X ∈ �n×n,
the matrix Y ∈ �m×n, and the positive scalars µ1 > 0 and
µ2 > 0, then K = YX−1 is the guaranteed cost control ma-
trix.

Furthermore, the corresponding value of the cost func-
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N1 =


−P + Q [(A + ∆A) + (B + ∆B)(K + ∆K)]T [K + ∆K]T

(A + ∆A) + (B + ∆B)(K + ∆K) −P−1 0
K + ∆K 0 −R−1



=


−P + Q [(A + ∆A) + (B + ∆B)K]T KT

(A + ∆A) + (B + ∆B)K −P−1 0
K 0 −R−1



+


0

(B + ∆B)Dk

Dk

 N(k)
[

Ek 0 0
]
+


ET

k
0
0

NT (k)
[

0 [(B + ∆B)Dk]T DT
k

]

≤


−P + Q [(A + ∆A) + (B + ∆B)K]T KT

(A + ∆A) + (B + ∆B)K −P−1 0
K 0 −R−1



+


ET

k
0
0


[

Ek 0 0
]
+


0

(B + ∆B)Dk

Dk


[

0 [(B + ∆B)Dk]T DT
k

]
= N2. (11)

N1 < 0 ⇔
[ −P + Q + (K + ∆K)T R(K + ∆K) [(A + ∆A) + (B + ∆B)(K + ∆K)]T

(A + ∆A) + (B + ∆B)(K + ∆K) −P−1

]
< 0,

⇔ [(A + ∆A) + (B + ∆B)(K + ∆K)]T P [(A + ∆A) + (B + ∆B)(K + ∆K)]

−P + Q + (K + ∆K)T R(K + ∆K) < 0⇒ (4). (12)

tion (3) satisfies the following inequality (13) for all admis-
sible uncertainties F(k), and the output of NN N(k)

J < J∗ = xT (0)X−1x(0). (13)

It should be noted that the matrix Y would be asymmet-
ric.

In order to prove Theorem 1, the following Lemma will
be used [12].

Lemma 2: Consider the appropriate matrixF which is sat-
isfying FF T ≤ In and for any matrices G and H , there ex-
ists the positive parameter λ > 0 such that the following
inequality holds

GFH +HTF TGT ≤ λGGT + λ−1HTH . (14)

Let us prove Theorem 1 by using the above Lemma 2.
Proof: Let us introduce the matrices X = P−1 and Y =

KP−1. Pre- and post-multiplying both sides of the inequality
(8) by the positive definite matrix



P 0 0 0 0 0 0
0 In 0 0 0 0 0
0 0 Im 0 0 0 0
0 0 0 Ipn 0 0 0
0 0 0 0 Iqa 0 0
0 0 0 0 0 Iqa 0
0 0 0 0 0 0 In


> 0 (15)

and applying the Schur complement [13] gives (9). It should
be noted that the LMI (8) is equivalent to the matrix inequal-
ity (9). Using the standard matrix inequality (14) of Lemma
2, for all admissible uncertainty, the matrix inequality (10)
holds. Thus, it is easy to verify that M1 < 0 because L < 0
is equivalent to M2 < 0 by applying the Schur complement.
Moreover, applying the standard matrix inequality (14) of
Lemma 2 to N1 which is defined by the left–hand side of

(11) results in the inequality (11). Since M1 < 0 is equiv-
alent to N2 < 0, N1 < 0 holds for all output of NN. Fi-
nally, using the matrix inequality (12) which is equivalent to
(11), it is concluded that the matrix inequality (4) is satis-
fied. Thus, K is the guaranteed cost control matrix. On the
other hand, since the results of the cost bound (13) can be
proved by using the similar argument for the proof of Theo-
rem 1, it is omitted. �

Remark 1: X and Y cannot always be found. Therefore,
since Theorem 1 is the sufficient condition, there is the pos-
sibility for the existence of other controller that the LMI
condition (8) is not satisfied. However, the existence of the
robust controller can discriminate by using the LMI condi-
tion (8) only. Namely, the existence of the proposed con-
troller is guaranteed as long as the LMI condition (8) holds.

Since the LMI (8) consists of a convex solution set of
(µ1, µ2, X, Y), various efficient convex optimization algo-
rithm can be applied. Moreover, its solutions represent a
set of the guaranteed cost control matrix K. This parame-
terized representation can be exploited to design the guar-
anteed cost control gain which minimizes the value of the
guaranteed cost for the closed-loop uncertain system. Con-
sequently, solving the following optimization problem al-
lows us to determine the optimal bound.

J < J∗ < min
(µ1, µ2, X, Y)

α, (16)

such that (8) and[ −α xT (0)
x(0) −X

]
< 0. (17)

The problem addressed in this section is defined as follows:
Problem 1: Find the guaranteed cost control matrix

K = YX−1 such that the LMIs (8) and (17) are satisfied and
the cost α become as small as possible.
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The bound in Problem 1 depends on the initial con-
dition x(0). To remove this dependence on x(0), it is as-
sumed that x(0) is a zero mean random variable satisfying
E[x(0)xT (0)] = In. Then, the LMI (17) implies[ −M In

In −X

]
< 0, (18)

where E[·] denotes the expectation, M is the expectation of
α.

The crucial difference between the uncertain discrete-
time system in [1], [2] and the considered system of this pa-
per is that the controller gain perturbations as the neurocon-
troller are newly added. Furthermore, the LMI approach has
been newly applied to the guaranteed cost control problem
for the discrete-time system that includes the uncertainty in
both state and input matrices compared to the existing re-
sults [14], [15]. Therefore, the obtaining results of this sec-
tion are original.

3. Neural Networks for Additive Gain Perturbations

The LMI design approach usually yields the conservative
controller due to the presence of the uncertainty F(k) and the
additive gain perturbations N(k) as the output of NN. The
main purpose of this paper is to introduce NN as additive
gain perturbations into the discrete-time uncertain system to
improve the cost performance. It should be noted that the
proposed neurocontroller regulates its outputs in real-time
under the robust stability guaranteed by the LMI approach.

3.1 On-Line Learning Algorithm of Neurocontroller

It is expected that the reduction of the cost will be attained
when the neurocontroller can manage the uncertain system
as the nominal linear system while compensating for control
errors by the conservative controller. That is, the neurocon-
troller is required to compensate the conservative controller
to work as the LQR controller in the uncertain system.

Let us consider the following nominal system without
the uncertainty and the gain perturbation.

x̂(k + 1) = Ax̂(k) + Bû(k), (19)

where x̂(k) ∈ �n is the state and û(k) ∈ �m is the control
input. For such linear system, it is well-known that the LQR
control is an effective method to design the controller which
can minimize the cost function (3). Based on the LQR, the
optimal control û∗(k) can be designed as

û∗(k) = K̂ x̂(k), (20a)

K̂ = −(R + BT P̂B)−1BT P̂A, (20b)

where K̂ is the optimal feedback gain matrix and the ma-
trix P̂ is the positive semidefinite symmetric solution of the
following algebraic Riccati equation.

P̂ = AT P̂A − AT P̂B(R + BT P̂B)−1BT P̂A + Q. (21)

It is known that the guaranteed cost of the nominal system

is smaller than that of the uncertain system. It can be much
expected that the reduction of the cost will be attained when
the response of the uncertain system behaves like that of the
nominal system. Therefore, the NN of the proposed system
is trained at the real-time so that the state discrepancy

∣∣∣∣∣∣x̂(k+
1)−x(k+1)

∣∣∣∣∣∣ becomes as small as possible at each step k. An
energy function E(k) is defined as the discrepancy between
the behavior of the nominal system according to the LQR
method and the one of the uncertain discrete-time system of
step k. At each step, the weight coefficients are modified so
as to minimize E(k) which is given by

E(k) :=
1
2

(x̂(k+1)−x(k+1))T (x̂(k+1)−x(k+1)) . (22)

If E(k) can be minimized as small as possible, the discrep-

ancy
∣∣∣∣∣∣x̂(k + 1)− x(k + 1)

∣∣∣∣∣∣2 would be also minimized so that
the cost of the uncertain discrete-time system is close to the
cost of the nominal system based on the LQR control.

In the learning phase of NN, the weight updating rules
can be described as

wi j
g (k + 1) = wi j

g (k) + ∆wi j
g (k). (23)

On the other hand, the modification of the weight coefficient
wi j

g (k) is given by

∆wi j
g (k) = −ε ∂E(k)

∂wi j
g (k)
, (24a)

∂E(k)

∂wi j
g (k)

=
∂E(k)
∂N(k)

· ∂N(k)

∂wi j
g (k)
, (24b)

where ε is the learning ratio.

The term
∂E(t)
∂N(k)

of the equation (24b) can be calculated

from the energy function (22) as follows:

∂E(k)
∂N(k)

= − (x̂(k+1) − x(k+1))(B + DF(k)Eb)DkEk.

(25)

Since the variable F(k) is unknown matrix function, the
equation (25) that is used to learn for NN would not be cal-
culated. In order to remove this problem, suppose there ex-
ists a parameter Γ(k) such that B + DF(k)Eb ≈ Γ(k)B. It
should be noted that Γ(k) is the matrix value function and its
elements are the positive scalar. It is worth pointing out that
even though the above assumption is conservative condition,
it is compensated by making use of learning ratio.

Then, the above equation (25) can be rewritten as fol-
lows:

∂E(k)
∂N(k)

≈− (x̂(k+1) − x(k+1))Γ(k)BDkEk. (26)

However, because of Γ(k), it is difficult to decide the learn-
ing rule of NN. Hence, it is necessary to set ε according to
Γ(k). In this paper, the modification of the weight coefficient
of the equation (24a) is defined as follows:



1908
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.8 AUGUST 2005

Fig. 2 Structure of the multilayered neural networks.

∆wi j
g (k)≈η (x̂(k+1) − x(k+1))BDkEk

∂N(k)

∂wi j
g (k)
, (27)

where η := ε||Γ(k)|| is defined as a new learning ratio. η is

used instead of deciding ε according to Γ(k).
∂N(k)

∂wi j
g (k)

can be

calculated using the chain rule on the NN. From (23) and
(27), NN can be trained so as to decrease the cost J on-line.

3.2 Multilayered Neural Networks

The utilized NN are of a three-layer feed-forward network
as shown in Fig. 2. The linear function is utilized in the
neurons of the input and the hidden layers, and a sigmoid
function in the output layer. The inputs and outputs of each
layer can be described as follows.

si
g(k) :=


Ui(k) {g = 1(input layer)}∑

w(i, j)
1 (k)o j

1(k) {g = 2(hidden layer)}∑
w(i, j)

2 (k)o j
2(k) {g = 3(output layer)},

oi
g(k) :=



si
1(k) {g = 1(input layer)}

si
2(k) + θ(i)1 (k) {g = 2(hidden layer)}

1 − e(−si
3(k)+θ(i)2 (k))

1 + e(−si
3(k)+θ(i)2 (k))

{g = 3(output layer)},

where si
g(k) and oi

g(k) are the input and the output of the

neuron i in the gth layer at the step k. wi, j
g (k) indicates the

weight coefficient from the neuron j in the gth layer to the
neuron i in the (g+1)th layer. Ui(k) is the input of NN. θ(i)g (k)
is a positive constant for the threshold of the neuron i in the
(g + 1)th layer. As the additive gain perturbations defined
in the formula (2), the outputs of NN are set in the range of
[−1.0, 1.0].

4. Numerical Example

In order to demonstrate the effectiveness of our proposed
method, a numerical example is given. The system matrices
are as follows.

A =

[ −0.2 1.0
1.0 −0.1

]
, B =

[
1.0
0.0

]
, D =

[
0.2
0.0

]
,

Ea =
[

2.0 2.2
]
, Eb = 0.1, Dk =

[
0.1 0.13

]
,

Ek =

[
1.0 0.0
0.0 1.0

]
, F(k) = f (k),

N(k) =

[
N1(k) 0

0 N2(k)

]
,

where N1(k) and N2(k) are the outputs of NN. The initial
system condition is x(0) = [4 4]T , and the weighting matri-
ces are chosen as Q = diag(1, 2) and R = 1, respectively. It
should be noted that for LQR theory, the parameters Q and
R are chosen freely by the control system designer without
any constraint.

Solving the LMI (8), the solutions are given by

X =

[
8.4462e − 02 −3.0146e − 02
−3.0146e − 02 1.3228e − 01

]
,

Y =
[

2.6144e − 02 −1.2549e − 01
]
,

µ1 = 1.2025, µ2 = 4.6081e − 02.

Since K := YX−1, the state feedback control gain K which
is based on the proposed LMI design method with the neu-
rocontroller is given by

K =
[
K1 K2

]
=
[ −3.1618e − 02 −9.5584e − 01

]
. (28)

Consequently, the optimal guaranteed cost of the uncertain
discrete-time closed-loop system which is given by (6) is
J∗ = 4.3167e + 02.

Based on the LQR control which is constructed from
(20) and (21), the state feedback control gain K̂ is calculated
as follows:

K̂ =
[
K̂1 K̂2

]
=
[

2.7267e − 01 −8.0558e − 01
]
. (29)

For the system without the proposed neurocontroller,
that is, N(k) ≡ 0, the control input of the uncertain system is
described by

u(k) = K̄x(k), (30)

where the state feedback control gain K̄ is designed by using
the LMI approach which is proposed in [2].

K̄ =
[
K̄1 K̄2

]
=
[

1.1722e − 01 −9.9172e − 01
]
. (31)

The neurocontroller is composed of 30 neurons in the
hidden layer and two neurons in the input and the out-
put layers, respectively. The initial weights are set ran-
domly in the range of [−0.05, 0.05]. Various uncertain sys-
tems were examined for f (k) = 1, f (k) = exp(−0.5k) and
f (k) = cos(1/18πk). Table 1 shows that the cost of the pro-
posed system is smaller than that of the system without the
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Table 1 A comparison of the cost in each condition.

The cost of the nominal system Ĵ = 8.9562e+01
f (k) η With NN Without NN
1 0.6 1.4085e+02 1.7810e+02
exp(−0.5k) 0.1 1.2625e+02 1.3203e+02
cos(1/18πk) 0.6 1.3877e+02 1.6243e+02

Fig. 3 Response of the closed-loop system with the uncertainty f (k) = 1
and the neurocontroller. (a), (b) State variables. (c) Control input. (d) State
feedback gain with additive gain.

Fig. 4 Response of the closed-loop system with the uncertainty f (k) =
exp(−0.5k) and the neurocontroller. (a), (b) State variables. (c) Control
input. (d) State feedback gain with additive gain.

neurocontroller in all cases. Therefore, it is shown from Ta-
ble 1 that the new proposed neurocontroller succeeds in im-
proving the cost.

The simulation results ( f (k) = 1) are shown in Fig. 3.
The response of the proposed neurocontroller is stabi-
lized faster than the controller without the neurocontroller
(Fig. 3 (a), (b) and (c)) is used. Figure 3 (d) shows the re-
sult for the feedback gain with the additive gain K̃, i.e.,
K + DkN(k)Ek. As another example, the simulation re-
sults are shown in Figs. 4, 5. The response of the proposed
method is also stabilized faster than the controller without
NN is used. The proposed neurocontroller could reduce the
cost and compensate for the uncertainties of each system.

Figure 6 shows the response with the proposed neuro-
controller and the LQR control ( f (k) = 1). The state vari-

Fig. 5 Response of the closed-loop system with the uncertainty f (k) =
cos(1/18πk) and the neurocontroller. (a), (b) State variables. (c) Control
input. (d) State feedback gain with additive gain.

Fig. 6 Response of the closed-loop system for the neurocontroller versus
LQR control under the uncertainty f (k) = 1. (a), (b) State variables. (c)
Control input. (d) State feedback gain with additive gain.

ables x1 and x2 can trace the state variables x̂1 and x̂2 well
as shown in Fig. 6 (a), (b). Since it is shown from Fig. 6 (d)
that K̃ changes for compensating for the system uncertain-
ties and its response can be close to the nominal response via
the LQR design method, the proposed neurocontroller suc-
ceeds in reducing the cost. Therefore, the energy function
E(k) is adequate for the learning algorithm.

5. Conclusions

The application of neural networks to the guaranteed cost
control problem of the discrete-time system that has un-
certainties in both state and input matrices has been inves-
tigated. Although the results presented seem to be slight
modification of the existing results [14] in the sense that the
systems uncertainties are included in both state and input
matrices, the new LMI condition and the learning algorithm
of the NN have been derived. Particularly, it has succeeded
in avoiding the Bilinear Matrix Inequality (BMI) condition
that has been established in [16]. Substituting the neurocon-
troller into the gain perturbations, the robust stability of the
closed-loop system is guaranteed even if the systems include
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NN. Moreover, the reduction of the cost is attained by using
the neurocontroller. The numerical example have shown the
excellent result that the NN has succeeded in reducing the
large cost caused by the LMI.
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