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On-line learning of robot arm impedance using neural networks
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Abstract

Impedance control is an effective control method for a manipulator that is in contact with its environment. Nevertheless, the
characteristics of force and motion control are determined by impedance parameters of the end-effector of the manipulator, which
must be designed according to the given task. This report presents a method that uses neural networks to regulate impedance
parameters of the manipulator’s end-effector while identifying environmental characteristics through on-line learning. Four kinds
of neural networks are used: three for the position, velocity and force control of the end-effector, and one for the identification of
environments. First, the neural networks for the position and velocity control are trained during free movements. Then, the neural
networks for the force control and identification of environments are trained during contact movements. Computer simulations
show that the method can regulate stiffness, viscosity and inertia parameters of the end-effector and identify unknown properties
of the environments through on-line learning.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

When a manipulator performs a task in contact with
ts environment, position and force control are required
ecause of constraints imposed by the environment.
he impedance control method[1] is an effective con-

rol approach for such contact tasks of the manipulator.
his method can realize the desired dynamic proper-

ies of the end-effector by regulating the mechanical
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ax: +81 824242387.

E-mail address:tsuji@bsys.hiroshima-u.ac.jp (T. Tsuji).

impedance parameters, i.e., inertia, viscosity, stiffn
and the desired trajectory of the end-effector. Howe
in general, it is extremely difficult to design them
cording to the target task and the environmental co
tions including nonlinear and time-varying factors.

Many studies have aimed at regulating
impedance property and the desired trajectory
the end-effector by utilizing optimization techniqu
Those methods can adapt the desired trajectory o
end-effector according to the task, but there still
mains to be accounted for how to design the des
impedance parameters. Besides, the methods c
be applied into the contact task where the chara
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istics of its environment are nonlinear or unknown.
For this problem, some methods using neural networks
(NNs) have been proposed, which can regulate robot
impedance properties through the learning of NNs in
consideration of the model uncertainties of manipulator
dynamics and its environments. Most of such methods
using NNs assume that the desired impedance param-
eters are given in advance, while several methods try
to obtain the desired impedance of the end-effector by
regulating the impedance parameters as well as the ref-
erence trajectory of the end-effector according to tasks
and environmental conditions. However, there does not
exist an effective method to regulate impedance param-
eters that can be applied to the case where environmen-
tal conditions are changed during task execution.

This paper proposes a new on-line learning method
using NNs to regulate all impedance parameters and
the desired trajectory by extending the off-line learning
methods proposed by Tsuji et al.[2,3]. The proposed
method can realize the on-line learning of contact tasks
by introducing another NN only for identifying the un-
known environment model. This paper is organized
as follows: Section2 describes related works on the
impedance control method. Then, the proposed learn-
ing method using NNs is explained in Sections3 and
4. Finally, the effectiveness of the proposed method is
verified by simulation experiments of contact tasks in-
cluding the transition from free to contact movements
and the modeling error of environments in Section5.
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end-point trajectory at the same time. Then, Xiao and
Todo[7] developed a discrete-time impedance control
algorithm using NN for adapting robot impedance
parameters to the unknown contact environment in
on-line. Moreover, Venkataraman et al.[8] proposed
an on-line learning method using NN which can
realize the desired contact force while identifying
the characteristics of environment, in which the
environment is expressed with a nonlinear viscoelastic
model and the desired trajectory is given beforehand.

The previous methods[4,5,8] cannot deal with a
contact task including free movements. The method
[7] focused on the control of the contact force only
in the normal direction of the contact plane for a sim-
ple pushing task and cannot regulate the desired end-
point trajectory. The methods[2,3,6]can be applied to
only cyclical tasks in which environmental conditions
are constant because the learning is conducted in off-
line. Considering to make a robot to perform realistic
tasks in a general environment, the present paper de-
velops a new method that the robot can cope with an
unknown task by regulating the control properties of its
movements according to changes of environmental cir-
cumstances including nonlinear and uncertain factors
in real-time.

3. Impedance control
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. Related works

Asada[4] developed a learning method to obt
he nonlinear viscous compliance of the end-effe
y applying NN as a force feedback controller. Co
nd Flash[5] proposed a method using NN to regul

he stiffness and viscosity of the end-effector, in wh
he NN is trained to minimize a cost function on fo
nd velocity while the desired velocity trajectory

he end-effector is modified to improve the learn
erformance. Likewise, Yang and Asada[6] proposed
progressive learning method using NN which

btain the target impedance parameters by modif
he desired velocity trajectory. Against these prev
ethods using NN, Tsuji et al.[2,3] proposed th

terative learning methods using NNs which c
egulate all impedance parameters and the de
In general, a motion equation of anm-joint manip-
lator in thel-dimensional task space can be expre
s

(θ)θ̈ + h(θ, θ̇) = τ + JT(θ)Fc, (1)

hereθ ∈ �m denotes the joint angle vector,M(θ) ∈
m×m the non-singular inertia matrix, andh(θ, θ̇) ∈
m is the nonlinear term including the joint torque

ributable to the centrifugal, coriolis, gravity and fr
ion forces.τ ∈ �m represents the joint torque vec
ndJ ∈ �l×m is the Jacobian matrix.Fc ∈ �l is the
xternal force exerted on the end-effector of the
ipulator from the environment in contact moveme
xternal forceFc can be expressed with an environm
odel including time-varying and nonlinear factors

c = g
(
dXo,dẊo,dẌo, t

)
, (2)



T. Tsuji,Y. Tanaka / Robotics and Autonomous Systems 52 (2005) 257–271 259

where dXo = Xe
o − X represents the displacement

vector between the end-effector positionXand the equi-
librium position on the environmentXe

o. g(∗) is a non-
linear and unknown function.

The desired impedance property of the end-effector
can be given as

Me dẌ + Be dẊ + Ke dX = Fd − Fc, (3)

whereMe, Be,Ke ∈ �l×l are the desired inertia, vis-
cosity and stiffness matrices of the end-effector, respec-
tively. dX = X − Xd ∈ �l is the displacement vector
betweenX and the desired position of the end-effector
Xd.Fd ∈ �l denotes the desired end-point force vector.
Applying the nonlinear compensation technique with

τ = {M̂−1(θ)JTMx(θ)J}Tĥ(θ, θ̇) − JT(θ)Fc

+JTMx(θ){Fact − J̇ θ̇} (4)

to the nonlinear equation of motion in(1), the following
linear dynamics in the operational task space can be
derived as

Ẍ = Fact, (5)

whereM̂(θ) andĥ(θ, θ̇) are estimated values ofM and
h(θ, θ̇), respectively.Mx(θ) = (JM̂−1(θ)JT)−1 ∈ �l×l

denotes a non-singular matrix insofar as the arm is not
in a singular posture.Fact ∈ �l denotes the force con-
trol vector represented in operational space. From(3)
a be
d
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Fig. 1. The block diagram of the impedance control represented in
the task space.

an unknown environment by trial and error. Therefore,
the next section proposes the two-step learning strat-
egy to regulate impedance parameters as well as the
desired trajectry in which a motion controller part and
a force controller part are separately trained through
the learning of NNs.

4. On-line learning of end-effector impedance
using NNs

4.1. Structure of control system

The proposed control system employs four NNs for
regulating impedance parameters of the end-effector
and for identifying task environment characteristics.
Fig. 2 illustrates the structure of the proposed
impedance control system including three multi-
layered NNs: the Position Control Network (PCN) for
controlling the end-effector position; the Velocity Con-
trol Network (VCN) for controlling the end-effector
velocity, and the Force Control Network (FCN) for con-
trolling the end-effector force. Inputs of these NNs are
the end-point position and velocity and the tracking
errors to the desired trajectory. Furthermore, the FCN
takes the end-point forceFc. When learning is termi-
nated, it can be expected that the trained NNs will out-
put the optimal impedance parameters corresponding
to gain matrices of the designed controller in(6)–(8);
M−1K from the PCN,M−1B from the VCN, and
M

of
N n
a

σ

nd (5), the following impedance control law can
esigned[2,3,9]as

act = Ft + Ff + Ẍd, (6)

t = M−1
e Be dẊ + M−1

e Ke dX, (7)

f = −M−1
e (Fd − Fc). (8)

Fig. 1shows a block diagram of the impedance c
rol in the operational task space. Note that the f
ontrol loop does not exist during free movements
auseFd = Fc = 0. The force control loop function
ogether with the position and velocity control loop d
ng contact movements. Using the designed imped
ontroller for robotic manipulators, dynamic proper
f the end-effector can be regulated by impedance
ameters. In general, however, it is extremely diffi
o design appropriate impedance and the desired tr
ory of the end-effector according to a given task w
e e e e
−1
e from the FCN.
The linear function is utilized in the input units

Ns. The sigmoid functionσi(x) is used in the hidde
nd output units given by

i(x) = ai tanh(x), (9)
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Fig. 2. The block diagram of the impedance control using three neu-
ral networks.

whereai represents a positive constant for regulating
the maximum output value. The following vectors rep-
resent outputs of NNs:

Op =
(
oT

p1, o
T
p2, . . . , o

T
pl

)T ∈ �l2, (10)

Ov = (oT
v1, o

T
v2, . . . , o

T
vl

)T ∈ �l2, (11)

Of = (oT
f1, o

T
f2, . . . , o

T
fl

)T ∈ �l2, (12)

where opi, ovi and ofi ∈ �l comprise thei-th row
of matrices M−1

e Ke, M−1
e Be, and M−1

e , respecti-
vely.

On-line learning of the NNs is conducted in the fol-
lowing two-step procedure in which a motion controller
part and a force controller part are separately trained
using NNs.

• First: PCV and VCN in a motion control part is
trained for improving the tracking control ability
of the end-effector to follow the desired trajecoty
Xd during free movements through minimizing the
tracking errors. This implies that the robot is able
to prepare for contact by planningXd adequately, if
the environment is given.

• Second: FCN in a force control part is trained
for realizing the target forceFd during contact
movements through minimizing the force con-
trol error, while modifying the desired trajectory

as

Fig. 3. The structure of the tracking control part using neural net-
works.

4.2. Learning during free movements

Fig. 3 shows the detailed structure of the tracking
control part using PCN and VCN. In free movement,
the force control inputFact is given as

Fact = Ft + Ẍd = Fp + Fv + Ẍd

=




oT
p1

oT
p2

...

oT
pl


dX +



oT

v1

oT
v2
...

oT
vl


dẊ + Ẍd, (13)

whereFp andFv ∈ �l are control vectors computed
with outputs of PCN and VCN, respectively.

Learning of PCN and VCN is performed using the
following energy function:

Et(t) = 1

2
dX(t)T dX(t) + 1

2
dẊ(t)T dẊ(t). (14)

Synaptic weights of the PCN,w(p)
ij , and the VCN,

w
(v)
ij , are modified in the direction of the gradient de-

scent reducingEt by

�w
(p)
ij (t) = −ηp

∂Et(t)

∂w
(p)
ij (t)

, (15)

�w
(v)
ij (t) = −ηv

∂Et(t)

∂w
(v)(t)

, (16)
to reduce the end-point force error as much
possible.
ij

∂Et(t)

∂w
(p)
ij (t)

= ∂Et(t)

∂X(t)

∂X(t)

∂Fp(t)

∂Fp(t)

∂Op(t)

∂Op(t)

∂w
(p)
ij (t)

, (17)
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∂Et(t)

∂w
(v)
ij (t)

= ∂Et(t)

∂Ẋ(t)

∂Ẋ(t)

∂Fv(t)

∂Fv(t)

∂Ov(t)

∂Ov(t)

∂w
(v)
ij (t)

, (18)

whereηp andηv are the learning rates for PCN and
VCN, respectively. The partial differential computa-
tions ∂Et(t)

∂X(t) , ∂Et(t)
∂Ẋ(t)

, ∂Fp(t)
∂Op(t) , and ∂Fv(t)

∂Ov(t) can be derived

by (13) and (14), whereas ∂Op(t)

∂w
(p)
ij

(t)
and ∂Ov(t)

∂w
(v)
ij

(t)
can be

obtained by the error back-propagation method[10].

However, ∂X(t)
∂Fp(t) and ∂Ẋ(t)

∂Fv(t) cannot be computed directly
because of the manipulator’s dynamics. For such com-

putational problems,∂X(t)
∂Fp(t) and ∂Ẋ(t)

∂Fv(t) are approximated

in this paper by finite variations as�X(t) ≈ �Fp(t)�t2s
and �Ẋ(t) ≈ �Fp(t)�ts, respectively, and yield
[11]:

∂X(t)

∂Fp(t)
≈ �t2sI, (19)

∂Ẋ(t)

∂Fv(t)
≈ �tsI, (20)

where �ts is the sampling interval andI is the l-
dimensional unit matrix.

When the learning of free movements has suffi-
ciently progressed to reduce the energy functionEt,
it can be expected that the trained PCN and VCN
may output optimal impedance parametersM−1

e Keand
M−1

e Be, respectively.

4
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Fig. 4. Identification of the environment model using EIN.

whereKc,Bc, andMc ∈ �l×l denote the stiffness, vis-
cosity, and inertia property of the environment, respec-
tively. However, some modeling errors are likely to ex-
ist between the real environmentg in (2) and the given
environment modelgm. The proposed control system
improves modeling errors on the environment using
the Environment Identification Network (EIN), which
is put in parallel with the given environment modelgm,
as shown inFig. 4. The EIN receives the end-point
force, position, velocity, and acceleration as the input
data. Then it outputs the force vectorFcn, compensating
for the force errors caused by modeling errors. There-
fore, the estimated end-point forceF̂c can be obtained
as follows:

F̂c = Fcm + Fcn. (23)

The energy function for the learning of EIN can be
defined as

Ee(t) = 1

2

{
F̂c(t) − Fc(t)

}T {
F̂c(t) − Fc(t)

}
. (24)

The synaptic weights in the EIN,w(e)
ij , are modified

in the direction of the gradient descent reducingEe as
follows:

�w
(e)
ij (t) = −ηe

∂Ee(t)

∂w
(e)
ij (t)

, (25)

∂Ee(t) ∂Ee(t) ∂F̂c(t) ∂Fcn(t)

w ms

w

.3. Identification of environments by NN

In the proposed method, to reduce the burde
he FCN learning, the linear environmental mode
ntroduced while modeling errors on the contact e
onment are estimated using another NN.

An environment model̂Fc can be expressed as

ˆc = ĝ
(
dXo,dẊo,dẌo, t

)
. (21)

According to the target task, it may be possibl
ive a robotic manipulator an environment model in
ance. For that reason, the environment is express
his study with the following linear and time-invaria
odel as

cm = gm(dXo,dẊo,dẌo)

= Kc dXo + Bc dẊo + Mc dẌo, (22)
∂w
(e)
ij (t)

=
∂F̂c(t) ∂Fcn(t) ∂w(e)

ij (t)
, (26)

hereηe is the learning rate for the EIN. The ter
∂Ee(t)
∂F̂c(t)

and ∂F̂c(t)
∂Fcn(t) can be computed by(23) and (24),

hereas∂Fcn(t)
∂w

(e)
ij

by error back-propagation learning.
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Fig. 5. The structure of the force control part using neural net-
work.

The conditionF̂c = Fc should be established at min-
imizing the energy functionEe(t) by the EIN such that
F̂c can be utilized for learning contact movements even
if the exact environment model is unknown for the ma-
nipulator.

4.4. Learning during contact movements

The FCN is trained to realize the desired end-point
force Fd with the estimated end-point forcêFc cal-
culated by the well-trained EIN under the condition
that F̂c = Fc during contact movements, in which the
force control error is computed using the environmen-
tal model from the position control error of the end-
effector.

Fig. 5shows the FCN structure for learning during
contact movements. Note that the synaptic weights of
the PCN and VCN are fixed during the learning of FCN
to maintain the tracking ability for the desired trajectory
after leaving contacted environments.

The learning in this stage is performed by ex-
changing the force control inputFact given in (13)
with

Fact = Ft + Ff + Ẍd = Ft −



oT

f1

oT
f2
...

oT
fl


 (Fd − F̂c) + Ẍd.

CN
c

E

Synaptic weights in the FCN,w(f)
ij , are modified in

the direction of the gradient descent reducingEf as

�w
(f)
ij (t) = −ηf

∂Ef (t)

∂w
(f)
ij (t)

, (29)

∂Ef (t)

∂w
(f)
ij (t)

= ∂Ef (t)

∂F̂c(t)

{
∂F̂c(t)

∂X(t)

∂X(t)

∂Ff (t)
+ ∂F̂c(t)

∂Ẋ(t)

∂Ẋ(t)

∂Ff (t)

+∂F̂c(t)

∂Ẍ(t)

∂Ẍ(t)

∂Ff (t)

}
∂Ff (t)

∂Of (t)

∂Of (t)

∂w
(f)
ij (t)

, (30)

whereηf is the learning rate for the FCN. The terms
∂Ef (t)
∂F̂c(t)

and ∂Ff (t)
∂Of (t)

can be computed by(27) and (28),

and ∂Of (t)
∂w

(f)
ij

(t)
by the error back propagation learning.

Moreover,∂X(t)
∂Ff (t)

, ∂Ẋ(t)
∂Ff (t)

, and ∂Ẍ(t)
∂Ff (t)

can be approximated
similarly to the learning rules for free movements as
∂X(t)
∂Ff (t)

≈ �t2sI, ∂Ẋ(t)
∂Ff (t)

≈ �tsI, and ∂Ẍ(t)
∂Ff (t)

= I, respec-

tively. The others,∂F̂c(t)
∂X(t) , ∂F̂c(t)

∂Ẋ(t)
and∂F̂c(t)

∂Ẍ(t)
, are computed

using the estimated end-point forceF̂c to concern dy-
namic characteristics of the environment during contact
movements with(22) and (23).

On the other hand, the desired trajectory is regulated
to reduce learning burdens on the FCN as much as
possible using the following modifying rule�Xd(t) as

�
∂Ef (t)

w oc-
i hen
m N
m
o

ve-
m EIN
h tion-
s
b iron-
m ver-
c
c ying
(27)

Then, the energy function for the learning of F
an be defined as

f(t) = 1

2
{Fd(t) − F̂c(t)}T{Fd(t) − F̂c(t)}. (28)
Xd(t) = −ηd
∂Xd(t)

, (31)

∂Ef (t)

∂Xd(t)
= ∂Ef (t)

∂F̂c(t)

∂F̂c(t)

∂X(t)

∂X(t)

∂Ff (t)

∂Ff (t)

∂Xd(t)
, (32)

hereηd is the modification rate. The desired vel
ty trajectory is also regulated in the same way. W

inimizing the force error of the end-point, the FC
ay express the optimal impedance parameterM−1

e as
utput values of the networkOf (t).

The designed learning rules during contact mo
ents can be utilized under the condition that the
as been trained sufficiently to establish the rela
hipF̂c ≈ Fc. However, the estimated error ofF̂c may
e greatly increased because of unexpected env
ental changes or the EIN learning error. To o

ome this problem, the learning ratesηf andηd during
ontact movements are determined with time-var
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functions with respect toEe(t) given in(24)as

ηf (t) = ηMAX
f

1 + pEe(t)
, (33)

ηd(t) = ηMAX
d

1 + pEe(t)
, (34)

whereηMAX
f andηMAX

d are the maximum values ofηf (t)
andηd(t), respectively, andp is a positive constant. It
is reasonable that the learning rates defined here be-
come small automatically to avoid mislearning when
the learning errorEe(t) is large.

5. Application to contact tasks

Effectiveness of the proposed method is investigated
through a series of computer simulations of two kinds
of contact movements including transitions between
free and contact movements. The employed robotic
manipulator is of a four-joint planar manipulator with
length of each link is 0.2 m, the mass 1.57 kg, and the
moment of inertia 0.8 kg m2. The impedance control
law is designed by means of the multi-point impedance
control method for a redundant manipulator[12,13].
The desired trajectory of the end-effector is generated
using the fifth-order polynomial with respect to timet
[14].

The PCN and VCN are of four-layered networks
w its,
a ur-
l ec-
t put
u ons
i

5

lar
m
t

5
ve-

m of
s

|

Fig. 6. An example of a contact task with the circular motion.

ηv = 15; the outputs of the NNs are within the limits
of −100 to 100.

Fig. 7shows changes of the end-effector trajectory
of the manipulator with progress of learning during free
movements. The numbers represent rotation times. The
generated trajectory by the end-effector does not agree
with the desired circular trajectory before learning at
all. The end-effector can roughly follow the desired
trajectory in the first trial and almost agree with it in
the second trial.

Fig. 8 shows the end-effector impedance parame-
ters,M−1

e K−1
e andM−1

e B−1
e , before and after learning

of free movements: the output values of PCN and VCN.
Diagonal elements after learning increase, whereas

Fig. 7. End-point trajectories of the manipulator during the learning
o

ith eight input units, 2 hidden layers with 20 un
nd four output units. The FCN and EIN are of fo

ayered networks with 10 and 8 input units, resp
ively, 2 hidden layers with 20 units, and four out
nits. The sampling interval of dynamics computati

n the learning is set at�ts = 0.001 s.

.1. Task 1: circular motion

The first target task for the manipulator is a circu
otion of the end-effector, as shown inFig. 6, in which

he end-effector rotates counterclockwise in 8 s.

.1.1. Learning during free movements
The learning of PCN and VCN during free mo

ents is performed, in which the initial values
ynaptic weights are generated randomly under|w(p)

ij |,
w

(v)
ij | < 0.01. Learning rates are set atηp = 13,000,
 f free movements.



264 T. Tsuji,Y. Tanaka / Robotics and Autonomous Systems 52 (2005) 257–271

Fig. 8. Impedance parameters before and after the learning of free movements.

other elements converge upon very small values. Each
output value is nearly constant and time-invariant dur-
ing learning of free movements.

5.1.2. Learning during contact movements
Learning of FCN and EIN for contact movements

is performed using trained PCN and VCN after learn-
ing free movements. The learning parameters are set
asηMAX

f = 0.0001,ηMAX
d = 0.01, p = 10, andηe =

0.001. The desired end-point force is atFd = (0,5)T N.
Note that no environmental positional information is
given to the manipulator. The given environment model
also contains modeling errors. The EIN starts identify-
ing modeling errors just after the end-point contacts
with the environment, whereas the FCN is trained and
the desired trajectory is modified using the estimated
end-point forceF̂c given in(25).

Here, characteristics of the given environment
modelgm in (22)agree with those of the real modelgas
Kc = diag.[0,10,000] N/m, Bc = diag.[0,20] Ns/m,
Mc = diag.[0,0.1] kg under x < −0.1 m, otherwise

including some modeling errors expressed by the fol-
lowing nonlinear dynamics as

Fcy = Kcy dy2
o + Bcy dẏ2

o + Mcy dÿo, (35)

whereFcy is the normal interaction force from the envi-
ronment to the end-effector, the tangential forceFcx =
0, and the impedance parameters are set asKcy =
1,000,000 N/m2, Bcy = 2000 N/m2, Mcy = 0.1 kg,
respectively.

Fig. 9shows time changes of the force errorEe(t) in
(24)between the estimated forceF̂c and the real force
Fc during the learning of contact movements. The force
error was considerably large before learning. It eventu-
ally decreased during learning. Some identification er-
rors are evident at a moment when the end-effector con-
tacts with environment and when environmental char-
acteristics change discontinuously.

Fig. 10shows the changes of arm postures and end-
point forcesFc of the manipulator in the process of
learning during contact movements. The large inter-
action force was generated until the learning of the
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Fig. 9. Identification error of the environment model during the
learning of contact movements.

FCN had progressed sufficiently because the manipula-
tor tried to follow the initial desired trajectory with the
trained PCN and VCN. The end-point force converges
to the desired one (5 N) with progress of FCN learn-
ing. In particular, the desired force is realized just after
contacts in the final trial. However, the force control

Fig. 10. End-point force of the manipulator during the learning of
contact movements.

errors remain only in a moment when environmental
characteristics change discontinuously. This fact indi-
cates that the trained EIN did not completely identify
the modeling errors.

Fig. 11 shows time profiles of the impedance pa-
rameter at the first and tenth trials, where (i, j) repre-
sents the matrix elements ofM−1

e . The elements con-
verge to very small values, except for (2,2) which rep-
resents end-point mobility in they direction. On the
other hand, the time history of (2,2) after the learn-
ing that the inertia parameter for they direction de-
creases only in contact movements. In addition, out-
put values of the PCN and VCN,M−1

e Ke andM−1
e Be,

remain almost constant during contact movements be-
cause both PCN and VCN are not trained during contact
movements. Consequently, the stiffnessKe and vis-
cosityBe become small for the normal direction dur-
ing contact movements. Therefore, the end-effector is
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Fig. 11. Impedance parameters before and after the learning of con-
tact movements.

compliant in the normal direction to the environment
surface.

Fig. 12shows the change of the desired trajectory.
When the end-point force is larger than the desired end-
point force, the desired trajectory is modified toward
the environment surface. On the other hand, when the
end-point force is smaller than the desired end-point
force, the desired trajectory is modified to go away
from the surface.Figs. 10 and 12show that the desired
trajectory is modified to realize the desired end-point
force during contact movements.

5.2. Task 2: crank rotation

The proposed method is applied to a crank rotation
task, as shown inFig. 13, which is a more advanced
constrained task than the previous contact tasks. In that
figure,Xoc andXc ∈ �2 denote the rotation center of
the crank with radiusr and the tip of the crank handle,

Fig. 12. Virtual trajectories of the manipulator during the learning
of cantact movements.

respectively. The origin of the task coordinate system
is set atXc. In addition, the end-effector of the manipu-
lator is connected to the crank handle with viscoelastic
properties.

Learning of the target task is carried out with a two-
step algorithm to lighten the burden on NNs. First,Xoc
and r are estimated to determine the task coordinate
system that must generate the desired trajectory of the
end-effector. Then, FCN and EIN are trained to regulate
impedance parameters and to identify the environment
modeling errors, respectively.

Computer simulations are executed using the same
four-joint planar manipulator in the previous section,
in where the manipulator has no information on crank
parameters and the given crank model includes some
modeling errors.
Fig. 13. An example of a crank rotation task.
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5.2.1. Estimation of center position and radius of
crank

The manipulator exerts a certain forceF on the
grasping crank handle at timet = 0, which starts the
crank rotation. Estimation ofXoc andr is operated af-
ter the norm of the end-effector velocity|Ẋ| exceeds a
certain valuev0.

The following conditions are established at timesta
andtb (0 < ta < tb) as

ẊT(ta)N(ta) = 0, (36)

ẊT(tb)N(tb) = 0, (37)

where|Ẋ(ta)|, |Ẋ(tb)| > v0, and|Ẋ(tb) − Ẋ(ta)| > v1;
N(ta) andN(tb) represent the unit vectors perpendic-
ular toẊ(ta) andẊ(tb), respectively. Therefore, a line
passing on the end-point at each time can be determined
with the corresponding norm vector, so that two lines
can be obtained.

The intersection of these two lines can be given as

X(ta) + pN(t1) = X(tb) + qN(tb). (38)

That equation yields the estimated center position of
the crankX̂oc and the estimated radius ˆr as

r̂ = p + q

2
, (39)

X̂oc = X(ta) + pN(ta) = X(tb) + qN(tb). (40)

On the other hand, thex axis of the task coordinate
s r of
t -
t ask
c oor-
d er
0(

H
t the
p
i

X

r̂

whereX̂oc(i) andr̂(i) denote the computed values using
(39) and (40)in the i-th trial, and 0< γ < 1.

5.2.2. Identification of crank model and learning
of end-effector impedance

The end-point impedance,Me, Be, Ke, and the de-
sired forceFd are expressed on the task coordinate sys-
tem. Therefore, the desired impedance model of the
end-effector in(3) is given by

RT(α(t))MeR(α(t))dẌ + RT(α(t))Be dẊR(α(t))

+RT(α(t))KeR(α(t))dX = R(α(t))Fd − Fc, (44)

whereR(α(t)) ∈ �2×2 represents a rotation matrix on
α(t). The FCN is trained to reduce the following energy
function expressed on the task coordinate system as the
following:

Ef (t) = 1

2

{
Fd(t) − RT(α(t))Fc(t)

}T

× {
Fd(t) − RT(α(t))Fc(t)

}
. (45)

On the other hand, the environment model ˆg is con-
structed with the crank model and the EIN, as shown in
Fig. 14. Therein, the EIN is put in a parallel situation
with the given crank model expressed by

Îcφ̂ + B̂φ
ˆ̇φ = r̂Fc, (46)

where φ̂ denotes the estimated rotation angle of the
crank, Îc the estimated moment of inertia, andB̂φ is
t ta-
t
c
m real
c loc-
i ing
t -
q can
b

X

a ed
a

F

w -
c r to
t

ystem is defined in parallel to the velocity vecto
he end-effector, whereas they axis points to the cen
er of rotation. Moreover, the rotation angle of the t
oordinate system with respect to the absolute c
inate system,α(t), can be obtained uniquely und
< α(t) < 2π by the following equation:

cosα(t) − sinα(t)

sinα(t) cosα(t)

)(
0

r̂

)
=
(
x̂oc − x(t)

ŷoc − y(t)

)
.

(41)

owever, it is quite likely that̂Xoc andr̂ estimated in
he first trial may contain some errors. Therefore,
recision ofX̂oc and r̂ is improved by the following

terative operations as

ˆ oc(i) = γX̂oc(i) + (1 − γ)X̂oc(i − 1), (42)

(i) = γr̂(i) + (1 − γ) r̂(i − 1), (43)
he estimated coefficient of viscous friction on ro
ion. The position of the crank handle,Xcm, can be
omputed using estimated information ˆr andφ̂, but it
ay contain some errors. The EIN identifies the

rank model using the end-point force, position, ve
ty, and acceleration. It takes an active part in modify
he estimated position of the crank handleXcn. Conse
uently, the estimated position of the crank handle
e obtained by

ˆ c = Xcm + Xcn (47)

nd the estimated end-point forceF̂c can be represent
s

ˆc = Kc dX̂oc + Bc d ˆ̇Xoc, (48)

here the matricesKc andBc ∈ �l×l represent vis
oelastic properties for connecting the end-effecto
he crank handle.
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Fig. 14. Identification of the environment using EIN in the crank
rotation task.

The energy function for the learning of EIN is de-
fined by

Ee(t) = 1

2

{
F̂c(t) − Fc(t)

}T {
F̂c(t) − Fc(t)

}
. (49)

Synaptic weights in the EIN,w(e)
ij , are modified in the

direction of the gradient descent as

�w
(e)
ij (t) = −ηe

∂Ee(t)

∂w
(e)
ij (t)

, (50)

∂Ee(t)

∂w
(e)
ij (t)

= ∂Ee(t)

∂F̂c(t)

∂F̂c(t)

∂Xcn(t)

∂Xcn(t)

∂w
(e)
ij (t)

, (51)

whereηe is the learning rate for the EIN. The terms
∂Ee(t)
∂F̂c(t)

and ∂F̂c(t)
∂Xcn(t) can be computed by(48) and (49),

whereas∂Xcn(t)
∂w

(e)
ij

by back-propagation learning.

Furthermore,Kc and Bc should be modified to
lighten the burden imposed on the FCN in learning
during contact movements. Therefore, the modification
variable of the stiffness�Kc is defined as

�Kc(t) = −ηkc
∂Ee(t)

∂Kc(t)
, (52)

∂Ee(t)

∂Kc(t)
= ∂Ee(t)

∂F̂c(t)

∂F̂c(t)

∂Kc(t)
, (53)

e
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E

e
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5.2.3. Learning during contact movements for
crank rotation

Learning during contact movements is performed
for the crank rotation using the trained PCN and VCN
during the free movement in Section5.1. Each struc-
ture of FCN and EIN is identical to those employed
respectively in Section5: four layered networks with
10 and 8 input units, respectively, 2 hidden layers with
20 units, and four output units. The desired trajectory of
the end-effector is a counterclockwise circular rotation
in 8 s, which is generated under estimated crank pa-
rameters using the fifth-order polynomial with respect
to time[14].

Parameters for learning NNs were set asηMAX
f =

0.005, ηMAX
d = 0.01, p = 10, ηe = 0.0001, ηkc =

100, andηbc = 50, respectively. Characteristics of
the real crank model in(46) were set asIc =
0.133 Nm,Bφ = 0.5 Nms/rad,Îc = 0.066 Nm, B̂φ =
0 Nms/rad,Xoc = (0.2,0)T m, andr = 0.2 m, respec-
tively. Initial viscoelastic properties for connecting
the end-effector to the crank handle were set as
Kc = diag.[0,10,000] N/m, Bc = diag.[0,20] Ns/m,

Fig. 15. Estimation errors of rotation center and radius of the crank.
where ηkc is the modification rate. In the sam
anner,Bc is modified to reduce the energy funct
e(t).
The relationshipF̂c = Fc is established when th

nergy functionEe(t) is minimized by EIN learnin
uch thatF̂c can be used to the learning rule of con
ovements.
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Fig. 16. Identification error of the environment during the learning
of crank rotations.

respectively. The desired end-point force was set as
Fd = (0,5)T N.

First, forceF = (5,−5)T N is exerted on the crank
handle by the manipulator end-effector at timet = 0
to estimate the center position and the crank radius.
Fig. 15shows changes of the estimation errors of rota-
tion centereoc(i) = ||X̂oc(i) − Xoc|| and the radius of
cranker(i) = |r̂(i) − r|. Errors converge to almost zero
through several iterative trials.

Next, the FCN and the desired trajectory are regu-
lated using the estimated end-point forceF̂c, whereas
the EIN identifies the environment modeling error.
Fig. 16 shows time changes ofEe(t) defined in(49)
before and after the learning of contact movements.
The identification error is very large before learning,
whereas the error decreases according to on-line learn-
ing progress.

Fig. 17 shows changes of arm postures and end-
point forceFcy of the manipulator during the learning

Fig. 17. End-point force of the manipulator during the learning of
crank rotations.

of crank rotation movements, whereFcy is expressed on
the task coordinate system. The numbers in the figure
represent rotation times of the crank. It can be seen that
the end-point force gradually converges to the desired
one (5 N) with the progress of the learning of FCN.

Fig. 18 shows time changes of the impedance pa-
rameterM−1

e , and output values of the FCN in the
first trial and the tenth trial, where (i, j) in the fig-
ure represents elements of the matrixM−1

e . The ele-
ments converge to very small values, except for (2,2),
which represents end-point mobility in they direction
on the task coordinate system. On the other hand, it
can be found from the time history of (2,2) after learn-
ing that the inertia parameter for they direction de-
creases only in contact movements. The gain matrices
M−1

e Ke,M
−1
e Be remain almost constant because both

PCN and VCN are not trained during contact move-
ments. Consequently, stiffness of the end-effectorKe
and viscosityBe become small for the normal direction



270 T. Tsuji,Y. Tanaka / Robotics and Autonomous Systems 52 (2005) 257–271

Fig. 18. Impedance parameters before and after the learning of crank
rotations.

during contact movements. In addition, from the result
of (2,1) after learning, the NNs are actively trained us-
ing the tangential force to realize the desired end-point
force in the direction of the rotation center of the crank.

6. Conclusions

This paper has presented an on-line learning method
using NNs to regulate impedance parameters of ma-
nipulators’ end-points. The proposed method achieves
on-line learning by introducing the NN for identifying
nonlinear characteristics of the environment in addi-
tion to the NNs for regulating impedance properties.
The proposed method can regulate all impedance pa-
rameters: inertia, viscosity, and stiffness. It does so
through learning and thereby reducing position and
force control errors. In addition, the desired trajectory
is modified actively to ensure steady convergence on
the specified desired end-point force.

The proposed on-line learning method in this pa-
per differs from the off-line learning methods in the
literature in terms of whether not the iterative trial is
needed. The off-line learning methods must execute
the iterative trial because the gradient decent of error is
calculated using results from the previous trial. In con-
trast, the proposed method can obtain that data on-line
without using past results. Therefore, an iterative trial
is not always needed for learning of NNs to progress ef-
ficiently. These considerations of the proposed method
are evident from experimental results for contact tasks.
For example, the manipulator can almost realize the
desired circular trajectory from the first trial in free
movement, as shown inFig. 7. In contrast, about ten
iterative trials were needed in the constrained move-
ment, as shown inFigs. 9–12, because the initial con-
dition changed considerably at each trial. For that rea-
son, several iterative trials were required to complete
the learning. The proposed on-line learning method is
applicable even if the initial condition was changed at
every trial. This fact represents a great advantage of
the proposed method: it is an extremely stringent re-
quirement that preserves the initial condition in the ac-
tual environment. To the contract, the off-line learning
method can be conducted only under the fixed initial
condition.

In addition, this study showed that learning for reg-
ulating the impedance parameters can be conducted
effectively even with a conventional back propagation
type NN by devising the control system and the learn-
i ing
r ore
e in
e er-
a ent
o ing
r d to
a

R

tion,
107

ce
rks,
468
ng laws. However, a suitable NN structure for learn
obot impedance should be investigated to realize m
ffective learning with few iterations and to apply
xperiments with real robots. In light of such consid
tions, future research will be directed to developm
f an effective method for determining NN learn
ates and improving the proposed control metho
llow for more complicated tasks.
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