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This paper proposes a new method to discriminate
vascular conditions from changes of biological signals
and arterial wall impedance using a neural network.
Since strong individual differences cause difficulty in
discriminating the vascular conditions, we infroduce
an impedance ratio of the arterial wall and attempt to
discriminate the vascular conditions during surgical
operations. From experimental results, it is shown
that various stimulations during operations cause
changes in the impedance parameters of the arterial
wall, and vascular conditions such as vasodilation,
vasoconstriction, and shock can be discriminated
accurately using the proposed method. This method
will be useful for monitoring the vascular conditions
during operations.

Keywords: neural network, arterial wall impedance,
vascular conditions, impedance ratio

1. Introduction

Physician must accurately determine patients’
condition to take proper steps in surgery and emergency
treatment. Electrocardiogram (ECG) and arterial
pressure are among the biological signals physicians use
to diagnose patients. Changes observed in time-domain
waveforms can be used to monitor blood circulation to
organs and tissues [1], but physicians must have expert
knowledge and sufficient experience to catch subtle
changes in waveforms, infer causes, and make
appropriate judgment. Monitoring conditions over long
periods, such as when determining anesthesia levels
from electroencelophalogram (EEG), also place a
considerable burden on physicians. Monitoring devices
to automatically discriminate vascular conditions and
accurately transmit information to physicians should be
very useful. ~ :

No reports have, to our knowledge, been made on the
deve!qpment of diagnosis support based on vascular
conditions, although studies exist on the estimation of
vascular age [2,3]. Takada et al. [2] used acceleration
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plethysmogram by taking the second derivative of a
plethysmogram and used statistics to determine its
correlation with vascular age. This is not, however,
quantitative nor can it be used for monitoring patients
during surgery.

Vascular constriction is controlled by smooth
muscles making up the arterial walls, and mechanical
impedance is conventionally used to model the dynamic
characteristics of muscles. Attempts have been made to
quantify the dynamic characteristics of blood vessels
using mechanical impedance, which consists of stiffness,
viscosity, and inertia. Mussa-Ivaldi et al. [4] conducted
one of the earliest studies of muscle impedance, in which
they estimated hand stiffness with maintained arm
posture. Tsuji et al. [5,6] succeeded to estimate stiffness
and hand impedance components of viscosity and inertia
by measuring impedance in different muscle contraction
levels, postures, and directions of motion.

A few reports have modeled dynamic characteristics
of the arterial wall using mechanical impedance.

~Mascaro and Asada [7] estimated impedance from

information such as vascular diameter and blood flow
velocity, although they do not detail their procedures and
accuracy.. Saeki et al. [8] quantitatively determined
arterial wall compliance during surgery from changes in
arterial pressure and plethysmogram. Applying
estimation of skeletal muscle impedance [5], we
proposed modeling arterial wall dynamics using the
mechanical impedance of stiffness, viscosity, and inertia
to estimate changing beat-to-beat conditions of blood
vessels, and grasped . vascular conditions in response to
the physician’s surgical actions as impedance
changes [9].

~ In this paper, we estimated vascular conditions in
which the scattering of estimation results due to
individual differences is minimized by the use of
impedance ratios, and attempted to identify vascular
conditions from impedance ratio patterns. Many
researchers have been reported the use of neural
networks for pattern discrimination of biological-
signals [10-17]. Hiraiwa et al.[11,12] reported on
discrimination of electrical potential patterns during
voluntary movements, using an error back propagation
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An arterial wall

Fig. 1. Schematic description of the arterial wall
impedance model considering only the characteristics in
the arbitrary radius [9]. The vascular radius r and the force
F caused by blood flow are measured to estimate the
arterial wall impedance by using a second-order linear

model.

neural network. Nishikawa et al. [13] conducted pattern
discrimination from Gabor-transformed electromyogram
(EMQG) signals using an error back propagation neural
network. As the complexity of the discrimination target
increases, however, the number of training samples and
training time for comventional error back propagation
neural networks [14] increase, necessitating large neural
_networks. As one measure against this problem, Tsuji et
al. proposed a log-linearized Gaussian mixture network
(LLGMN), a type of feed-forward neural network. That
uses a Gaussian mixture model. for the network and
acquires statistics by learning. Specifically, it has
demonstrated superiority over other neural networks in
the pattern discrimination of EMG [16,17].

This paper proposes using LLGMN to discriminate
vascular conditions based on estimated biological signals
such as arterial wall impedance and arterial pressure.

Section 2 describes the vascular model and estimation-

for arterial wall impedance. Section 3 presents
preliminary processing steps and discusses the
characteristics of the neural network wused for
discriminating these conditions. Section 4 presents the
results of experiments imn vascular condition
discrimination and discusses the feasibility of the
proposed method.

2. Arterial Wall Impedance [9]

Figure 1 shows the impedance model for an arterial
wall. Considering only characteristics of the arterial wall
in an arbitrary radial direction, impedance characteristics
can be expressed from radial force and wall displacement
as follows:
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Fig. 2. Theory of plethsmogram

where F(f) is the force exerted by blood flow on the
arterial wall; M, B, and K are the inertia, viscosity, and
stiffness; r(f), 7(¢), and #(¢) are the position, velocity, and
acceleration of the arterial wall; and r, is the arterial
radius without blood pressure acting. Using 7, to denote
the time when displacement starts, dynamic character-
istics of the blood vessel at time ¢ are expressed as

follows:

dF(t) = Mdi(¢) +Bdi() + Kdr(t) . . . . . . @

where  dr(t)=r(t)—r(t,), dr(t)=r{t)~r(1,),
dr(t)=r(t)~¥(t,), and dF ()= F (1)~ F(t,)

F(r) and r(¢) must be measured to estimate
impedance parameters using (2). In this study, arterial
pressure measurements are used to express F(t).
Assuming that arterial pressure is proportional to force,
we have [9]:

FOy=k P, () . . .. . ... ... ... 3

where k;is a proportionality constant and P,(z) is arterial
pressure.

Direct measurement of r(¢) is difficult to conduct
invasively. So r, (), which is the sum of all arterial radii
at the measurement location, is estimated from
plethysmogram.

Using I, to denote the intenmsity of LED-emitted
incident light on a blood vessel of diameter D, and I, to
denote the intensity of transmitted light in Fig.2(a), it
follows from the Lambert-Beer’s law [18] that:

A, =log{ly /T,)=ECD. . . . . . . ... @

where A, is the absorbance due to an arterial diameter of
D, shown to be proportional to density C of light
absorbing material and arterial diameter D, and E is an
absorbance constant unique to the material. Using

I, — AI() to denote the change in transmitted light
caused by an arterial diameter change of D to D + AD(%),

i is given by (Fig.2(b)): -
FO=MF(t) +Bi @)+ K ()-r.). . . (1) the change in absorbance AA(z) is given by (Fig ;(b))
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Fig. 3. Overview of vascular conditions discrimination based
on the biological signals

M)y =A@ - A,
=log(l, / (I, —AI(®))) =ECAD@). . . (5)

Plethysmogram P,(z) is a measure of AA(?).

Since plethysmogram varies in proportion to blood
vessel pulsation, we simply assume that arterial radius is
proportional to plethysmogram, which yields:

() =P_f(£i).ci‘_*£. ............. ©)

F

where P, (1) is the plethysmogram, k, is a proportionality
constant, and A, is the absorbance.

Using arterial pressure P,(¢) (of (3)) for force acting
on the arterial wall and plethysmogram P,(r) (of (6)) for
arterial radius, arterial wall impedance is estimated from
the following equation:

dP, (1) = MdP,(t)+ BdP,(t) + RdP,t) . . . . (7)
where
=M 5-B g X ©
kpkf kpk_f kpkf

and  dP,(1)=PF, (1)~ B, (t,), dP()=P()=F(t,).
Here, M is viewed as representing mass and B and K
viscous and elastic characteristics of the arterial wall.

3. Digcrimination of Vascular Conditions
Using a Neural Network

Figure 3 shows vascular condition discrimination
using 2 neural network. This section details preliminary
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Fig. 4. Example of the measured electrocardiogram. The
electrocardiogram consists of P wave, Q wave, R wave, S
wave, and T wave in general.

processing and the LLGMN [5] used to discriminate
vascular conditions.

3.1. Preliminary Processing

Figure 4 shows an example of the measured ECG
signal. The P wave corresponds to atrial excitation, the
QRS wave to ventricular excitation, and the T wave to
ventricular repolarization [19]. The R wave generally
has a distinctly large amplitude, and so is used in this
study to mark ECG signal divisions. Defining the time
when the R wave appears in each ECG recognition cycle
as 1, arterial pressure dPy(z) and plethysmogram dPft)
for the interval (RR interval) between the R wave and the
subsequent R wave are used to determine impedance
parameters of (8) by the method of least squares. Since
the previous RR interval is established each time an R
wave is detected, it is possible to estimate beat-to-beat
arterial wall impedance parameters M, B and K.
Proportionality factors &; and k&, in (8) are unknown
parameters that vary with each subject, and give rise t0
individual differences. Because input parameters that
carry considerable individual differences make it

difficult to conduct pattern discrimination with neural

networks, a preliminary process is done to minimize the
effect of individual differences.

In this paper, the preliminary process involves
computation of ratios. Impedance ratios M . , B, and
~mm of M, B, and K in (8), relative to impedance
parameters M, B, and K when the vascular

condition is relatively stable, are calculated by the
following equations:
ﬂmio ='~£‘ Emm _i’kmio ='—§'* T (9)
M B rest : Krcst
Similarly,. ratios of arterial pressure and
plethysmogram also are calculated to minimize the
effects of individual differences in biological signals as
follows:
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where IBP, .y, IBP g, PLS oy, and PLSy;, are maximum
and minimum arterial pressure and plethysmogram
during each beat-to-beat interval. IBP., and PLS., are
differences between maximum and minimum arterial
‘pressure and plethysmogram in a relatively rested
condition. :
Impedance ratios and biological signal ratios defined
by (9)«11) are input to the neural network
as characteristic vector x(t) =[x, (), x,(2), - x, (£)]"

e RE(L=5).

3.2. Neural Network

The LLGMN [15] is shown in Fig.5. Input vector x(#)
at time ¢ is first subjected to nonlinear transformation as
follows:

X0 =[Lx®)", %, ,x,Ox, @),
x (x, (@), x, @®? 5% (D)x5(2),
<X, Ox, (0, x, (0] L L (12)

This transformation is dome to represent normal
distributions of each component of the Gaussian mixture
model in linear computation of new input vector X(¢) and
neural network’s weight coefficients.

The neural network’s first layer consists of H units in
agreement with the number of dimensions

H=1+L(L+3)/2 of X(¢). Each unit uses an identity
function for input-output functions, so input Xx(f) comes
out as the output. Weights w*™ are applied to the first

layer’s outputs, which are then sent to the second layer.
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Fig. 6. Biological signals and vascular conditions

Using PO4(f) to denote the first layer’s output, inputs to

and output from unit {k,m} of the second layer, denoted

by @I.(f) and PO, (f), are given by:

L. ®= i Do, @wr™ . "(13)
(2)
(2) Ok,m (t) - — :{Xp[ Ik,m (t)] (14)
DIPIT RO

where w&H) (B = 1,2, -+, H), withk=1,2, -, Kand
m =1, 2, .-, M, K represents the vascular conditions,
and M, the number of components of Gaussian
distribution belonging to vascular condition k. Unit k of
the third layer is linked to M, units of the second layer,
given by the following input-output relation:

d7.() = Mz @O (15)

P0,O)=r1,0 ............ (16)

Outputs of the third layer umits give posterior
probabilities of wvascular conditions. The vascular
condition with the highest probability is considered most
likely at time ¢.

Learning of the neural network is as follows: The
LLGMN learns to maximize the logarithmic likelihood
based on N data samples x(#n) (n = 1, ---, N). Consider the
case when training vector T(n) = [Ty(n), Tx(n), .-, Te(n)]"
is given for nth input vector x(n). Ti(n) is unity for event
k, otherwise zero. Since LLGMN output O«n)
corresponds to posterior probabilities, learning takes
place by minimizing evaluation function J given by [15]:

J= —ZN‘:‘ i T, (n)logO,(n) . . . . . . . . 17)

n=1 k=1

141



Sakane, A. et al.

BSS-9800

Subject

@)
IBP (Invasive Blood Pressure)

Catheter

LED @ Photo diode

ial artery PLS (Plethysmogram)

(b}

Fig. 7. (a) Experimental apparatus. (b) IBP is measured at
transradial artery of wrist using a catheter, and PLS is
measured with the ipsilateral thumb.

3.3. Discrimination Rule

A discrimination error occurred in the wvascular
condition prevents proper treatment and gives rise to
serious consequences from misdiagnosis. To avoid such
errors, the mneural network should not conduct
discrimnination of information that consists of signals
containing noise. The coefficient of determination of the
arterial wall impedance model given by (7) is thus used
for judging whether discrimination should take place.
The coefficient of determination is used to evaluate how
successful parameter estimation was {9].

_ First, the coefficient of determination is determined
from measured arterial pressure and arterial pressure
calculated from impedance estimation based on (7) [20].
Then, the coefficient of determination R is compared to
threshold R/ to determine whether to suspend
discrimination. If R*> > R, the discrimination result is

adopted as the vascular condition; if R* <R?, then

discrimination is withheld since the received signal is
inappropriate.

3.4. Vascular Conditions

Vascular conditions targeted for discrimination were
defined on the basis of Lissajous’s figures in Fig.6 [8].
The abscissa represents the arterial pressure, and the
ordinate plethysmogram values, so figures provide a
rough diagnosis of vascular conditions. The following
four conditions were set up for discrimination:

I. Vasodilation: It is the process by which blood
vessels are dilated in the extremities (arms and
legs), allowing a greater volume of blood to flow
to these tissues.

II. Normal: Normal condition in which blood
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circulation is stable.

HI. Vasoconstriction: It decreases the diameter of
the vessel lumen to allow Jess blood through. This
is caused by the dilation or contraction of the
smooth muscle in the vessel walls, particularly in
the arterioles. It is the exact opposite to the
vasodilation.

IV. Shock: A condition due to madequate blood
supply to tissues which is life-threatening.

It is possible to refine settings with sufficient learning
signals. Determination of the optimal number of setting
jevels is planned in projected investigation.

4. Discrimination Experiment

4.1. Experimental Condition

A discrimination experiment was conducted to verify
the feasibility of the proposed method. The apparatus
measuring biological signals used for estimation is
shown in Fig.7. The two subjects consisted were one
undergoing endoscopic transthoracic sympathectomy
(patient A) and the other a partial resection of the tongue
cancer (patient B). Endoscopic transthoracic sympa-
thectomy is taken against hyperhidrosis, in which
hyperfunction of sympathetic nerves in the thorax causes
excessive sweating in the palms or underarm, and which
is usually accompanied by blood vessel constriction.
Sympathetic nerves are interrupted with a clip to stop
local sweating [21]. Such surgery dilates blood vessels,
so our proposed method may enable monitoring the
success or failure of surgery. Partial resection of the
tongue cancer was undertaken to remove a cancer tumor.

ECG, arterial pressure, and plethysmogram were
simultaneously measured during surgery to discriminate
vascular conditions. A bedside monitor (BSS-9800,
Nihon Kohden Corp.} was used for measurement, with
data stored in a personal computer at a sampling
frequency of 125 Hz. Arterial pressure was measured by
inserting a catheter in the left radial artery. Plethys-
mography was measured using the thumb on the same
side.

Neural network learning signals were obtained from
four patients other than subjects A and B, who
underwent endoscopic transthoracic sympathectomy.
However, we were unable to obtain learning signals
corresponding to the defined vascular conditions of
“vasodilation” and “shock.” Missing data were thus
generated from normalized random numbers N(u, 0. 1)
In this paper, the means p was set as follows: p 18P,
0.5, ppg = 1.5, B~ 0.33, uB =033, and p,; =
0.33 for vasodilation; p B, = 02, Hps, mﬁ 2,
[T —1.0,;18“&0—1.0, andpp = l .0 for shock.

Moo

4.2. Discrimination Results

Discrimination results using the LLGMN are shown
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Fig. 8. Classification results of the vascular conditions during surgical operations

in Fig.8. In order from the top, plots represent the arterial
pressure variation ratio, plethysmogram variation ratio,
inertia ratio, viscosity ratio, stiffness ratio, the vascular
condition discrimination results, and coefficient of
determination. Shaded regions indicate vasoconstriction
conditions. Ten data samples were obtained immediately
before surgery, when the patient was sufficiently
anesthesthetized and sample means were used as
reference (rest) values. A threshold of R = 0.9 was
adopted for the present case, below which discrimination
was withheld and the previous discrimination result
maintained. ~

In results for patient A (Fig.8(a)), the physician
searches for the sympathetic nerve to be interrupted
during 700-1,500 sec. Sympathetic nerves are excited,
causing blood vessels to constrict and impedance
parameters to increase. The neural
discriminated vasoconstriction. After the sympathetic
nerve was interrupted at around 1,500 sec, a normal,
stable condition is discriminated. After 3,700 sec,
anesthesia wears off so blood vessels constrict, once
again discriminated as a state of vasoconstriction.
Results show that arterial wall impedance and biological
signals are successful in discriminating vascular
conditions arising from the physician’s surgical actions
and the patient’s condition.

Patient B underwent surgery accompanied by severe
pain during 100800 sec, and anesthesia began to wear
off after 2,200sec. As in the previous subject, all
impedance parameters increase during vasoconstriction,
with successful discrimination. Due to noise, discrimina-
tion of conditions is unstable at times such as when
anesthesia begins to wear off, suggesting that future
investigations should include the determination of an
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optimal setting for the coefficient of determination
threshold. Even so, overall vascular conditions were
discriminated successfully with patients undergoing
different surgery, demonstrating the feasibility of the
proposed method.

5. Conclusions

This paper discussed neural-network-based discrim-
ination of vascular conditions, targeting development of
a diagnosis support system for conveying information
the physician needs to understand the patient’s vascular
conditions. When the method was used in discrimination .
experiments using data measured during actual surgery,
vascular conditions corresponding to the physician’s
surgical actions were successfully discriminated, thus
demonstrating the feasibility of the proposed method.

Future research will include improvement of the
discrimination rate and testing the method’s validity
using different surgery data. We also plan to develop
monitoring based on real-time discrimination for use in
actual surgery. '
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