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Bio-Mimetic Trajectory Generation of Robots via
Artificial Potential Field With Time Base Generator
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Abstract—This paper proposes a new trajectory generation
method that allows full control of transient behavior, namely,
time-to-target and velocity profile, based on the artificial potential
field approach for a real-time motion planning problem of robots.
Little attention, in fact, has been paid to the temporal aspects of
this class of path planning methods. The ability to control the
motion time to the target as well as the velocity profile of the
generated trajectories, however, is of great interest in real-life
applications. In the paper, we argue that such transient behavior
should be taken into account within the framework of the artificial
potential field approach.

Index Terms—Artificial potential field, human-like movements,
time base generator, trajectory generation.

I. INTRODUCTION

REMARKABLE developments of human-shaped robots
have been achieved with the latest progress of robotic

technology in recent years [1], [2], so that a friendly feeling of a
human toward the robot is practically realized from a cosmetic
point of view. It has been expected that the robots will be able
to cowork and coexsit with a human at home or a workspace
in the near future. However, no matter how similar to a human
being in appearance the robot is, it is very difficult to cowork
with a human in daily activities if it cannot act or perform a
task with human-like movements.

The purpose of the present paper is to develop a method for
generating a bio-mimetic trajectory of robots which has char-
acteristics of human movements by introducing the mechanism
of human hand trajectory generation into the Artificial Potential
Field Approach (APFA) [3]–[13] which has been often used for
the trajectory planning of the robots. The final goal of this study
is to control the robot with human-like smooth movements.

In the APFA, a target position is represented by an artificial
attractive potential field and obstacles by corresponding repul-
sive fields, so that the trajectory to the target can be associated
with the unique flow-line of the gradient field through the initial
position and can be generated via a flow-line tracking process.
This approach is suitable for real-time motion planning of robots
since the algorithm is simple and computationally much less ex-
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pensive than other methods based on global information about
the task space. However, at least two important weak points
should be singled out: local minima and transient control.

With regard to the first problem, it is a simple observation that
when the attractive potential to the goal and the repulsive one
from the obstacles are equal, the gradient vector of the potential
field becomes zero and the robot falls into adeadlock. Many
methods have been proposed to overcome this problem. Con-
nolly, Burns and Weiss [5] proposed a method using Laplace’s
differential equation based on the idea that the deadlock problem
is completely solved when one can define a potential function
which does not include local minima structurally. In fact, some
potential functions of this kind have been proposed [6]–[8].

The other disadvantage is that it is difficult in the artificial po-
tential field framework to regulate the transient behavior of the
generated trajectories such as the movement time to the target
and the shape of the velocity profile. For example, even if the
potential function without local minima is used, it is difficult to
estimate the movement time required for reaching beforehand.
Moreover, the velocity profile of the generated trajectory cannot
be adjusted as required since it is determined by the shape of the
potential field. Hence, although one of the most crucial winning
features of the APFA is real-time applicability, it is difficult to
use the generated trajectory for the control of the robots in real
time. Quite likely, the scarce consideration about the transient
behavior of the planned paths was motivated by the fact that
the deadlock-free requirement was the overwhelming concern
in the field. For this problem, there have been some studies on
the time-optimal trajectory planning to the target [8]–[10]. In
these studies, the movement time is regulated by using the spa-
tial trajectory, generated beforehand, as a parameter. Therefore,
whenever the space trajectory is renewed by changing the task
space condition, the planning of the movement time has to be
redone. Also, the previous studies do not consider regulation of
the velocity profile to reach the target point.

Recently, Morassoet al. [14], [15] proposed a two-dimen-
sional trajectory generation approach for modeling human
reaching movements. In this method, the hand trajectory is
generated by synchronizing the translational and rotational
velocities of the hand with a scalar signal generated by a time
base generator (TBG). The TBG generates a time-series signal,
which is a scalar signal with a controllable finite duration and
bell-shaped velocity profile. Thus, the movement time and
the velocity profile of the hand trajectory can be regulated
indirectly by adjusting the parameters of the TBG. Then, Tsuji
et al. [16]–[19] applied the TBG mechanism to the control of
the robots.
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In this paper, a new trajectory generation method is proposed
by introducing the TBG into the APFA. The method can regu-
late the movement time from the initial position to the goal and
the velocity profile of the robot, in which the generating tra-
jectory has the characteristics of human-like movements; i.e.,
the velocity profile is bell-shaped. Remarkably, the method can
take advantage of a variety of potential functions developed by
people working in the field (particularly, the functions which are
deadlock-free), because it is a property of the proposed mecha-
nism that the temporal structure of the planned path is regulated
through the TBG and is rather independent of the specific type
of potential function.

The paper is organized as follows: Section II describes the
APFA and points out its general problem. In Section III, the
basic principles of the proposed method, including examples
of the TBG’s, are explained. Then the method is applied to a
multi-joint redundant manipulator and a unicycle-like vehicle in
Section IV and Section V, respectively. It is shown from com-
puter simulations that the method can regulate in a smooth way
the spatio-temporal structure of the trajectories.

II. A RTIFICIAL POTENTIAL FIELD APPROACH

Let us consider the following dynamic linear system with a
drift part:

(1)

where

is the
state variable vector, is the input vector,

is the zero matrix and is the unit matrix.
In this section, in order to clarify the purpose of this study, we
attempt to design the feedback control law to stabilize the
system (1) toward the equilibrium point by using the
artificial potential field approach (APFA).

The potential function with quadratic form can be defined
when the target is set at as

(2)

where diag under
. Based on the potential function defined by (2), a

feedback control law which stabilizes the system asymptoti-
cally can be designed as

(3)

where

...
...

.. .
...

Fig. 1. Block diagram of the proposed control system.

Substituting the designed controller given in (3) into the
time derivation of the potential function yields

(4)

where

diag

The potential function given in (2) does not have any local
minimum so that except at the equilibrium point
and has the minimum value at . Thus, is
controlled to the equilibrium point by means of the feedback
control law given in (3). Moreover, substituting (3) into (1)
the following linear system can be derived:

(5)

where

diag

Obviously, the system given in (1) is asymptotically stable under
the designed feedback controller . However, it can be con-
cluded that it is impossible to regulate the convergence time and
the dynamic behavior of the system as hoped [18].

III. T RAJECTORY GENERATION METHOD USING

TIME BASE GENERATOR

In this section, the proposed method based on the APFA with
the TBG [16]–[19] and the time scale transformation [21] is
explained in detail.

Fig. 1 shows a block diagram of the proposed control system,
where is a target point. The TBG generates a nonincreasing
function with a bell-shaped velocity profile satisfying

and .

A. TBG

The TBG was originally defined for a model of human move-
ments [14], [15]. Morassoet al. derived the TBG with a bell-
shaped velocity profile in order to represent the feature of the
end-point trajectory.

In order to illustrate the operation of the TBG in the control
loop, theterminal attractor conceptis used. This special kind of
attractor was introduced by Zak [20] into a nonlinear neural net-
work model and it was shown that a system with a terminal at-
tractor always converges to the equilibrium point in a finite time,
where the sufficient condition to have the terminal attractor is
that the Lipschitz condition of ordinary differential equations is
violated at the equilibrium point.
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The dynamics of the TBG is defined as follows:

(6)

where is a positive constant which allows control of the con-
vergence time and is a constant which determines the be-
havior of the TBG, with . From (6) it can be seen
that has two equilibrium points: a stable one ( ) and an
unstable one ( ). Consequently, always converges stably
to , when an initial value of is chosen as ,
with a very small positive constant. Then the convergence time

can be calculated as

(7)

where is the gamma function (Euler’s integral of the second
kind). Thus, the system converges to the equilibrium point
in the finite time if the parameter is chosen as

(8)

This means that the equilibrium point is a terminal attractor.
The velocity signal , which is null for and ,
has a bell-shaped profile with the maximum absolute value at

: . With regard to the acceleration
profile, the following form can be derived as

(9)

and it can be seen that the condition for the existence of a
bounded acceleration at the equilibrium point is given by the
inequality . Then, the jerk of is derived by
differentiating (9)

(10)
which gives the following more restrictive condition for having
a bounded jerk: . Figs. 2 and 3 show the changes
of generated by the TBG depending on the parameters
and . In Fig. 2, the time histories of and are shown
depending on the convergence time , 1.5 and 2.0 [s]
under the parameters and . All trajec-
tories converge to the equilibrium point at the specified time.
Moreover, Fig. 3 shows the time histories of depending on
the change of the power parameter , 0.5 and 0.75 with

s and . The time history of can be
regulated through the power parameterwhile the convergence
time remains constant.

In summary, by selecting two parameters of the TBG (and
), a family of time-varying signals can be generated. Note

that, from the point of view of real-time implementation, it is
possible to use any scalar function of time satisfying the prop-
erties of described above: half period of the cosine function,
a look-up table etc.

B. Control Law With the TBG Based Method

The basic idea of the proposed method is to compress a time
scale of the controlled system with the TBG according to the

Fig. 2. Change of�(t) depending on the convergence timet with the constant
power parameter� = 0:5.

Fig. 3. Change of�(t) depending on the power parameter� with the constant
convergence timet = 1:0 [s].

specified convergence time in the actual time scale and to
design the asymptotic stabilizer for the time scaled system by
means of the APFA.

The time scale compression with the TBG can be realized by
the time scale transformation [21] with the virtual time scale
whose infinite time corresponds to a specified finite timeof
the TBG in the actual time scale. Then, the relationship between
actual time and virtual time is given by

(11)

where the continuous function is called a time scale func-
tion [21]. In order to compress the time scale of the system with
the TBG, the time scale function is defined as

(12)

where is a positive constant. From (11) and (12), the virtual
time can be represented with respect toas follows:

(13)

The parametercan regulate the transformation of the time axis.
The compressibility of the time axis becomes larger near the
specified time as decreasing, while it becomes uniform in all
the time as increasing. Generally, the stability and dynamic
property of systems do not change in any time scale when a
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strictly monotone increasing function with respect to the actual
time is used as the time scale function. It is obvious that virtual
time given in (13) never goes backward against actual time,
so that virtual time is used as a new time scale in time scale
transformation of the original system (1) in order to derive the
proposed controller.

The system given in (1) can be rewritten in the virtual time
scale as

(14)

Applying the state and input transformation with the new state
variable and the new input , defined as

(15)

(16)

to the system (14), the new linear system in the transformed time
scale is obtained as follows:

(17)

The next step is to design the feedback control law which can
stabilize this time scaled system (17) asymptotically in the vir-
tual time scale by means of the conventional APFA. The poten-
tial function with quadratic form for the time scaled system
(17) can be defined as follows:

(18)

Designing the feedback control law based on with the
APFA as

(19)

the time-derivative of the potential function in the new time
scale yields

(20)

The time scaled system is stabilized asymptotically in the virtual
time scale by means of the designed feedback controller
given in (19).

By inverse time scale transformation from virtual timeto
actual time for the designed stabilizer with (15) and (16),
the following feedback control law for the original system
(1) can be obtained as

(21)

The infinite time in the virtual time scale is corresponding to
the finite time in the actual time scale. Therefore, the inverse

time scale transformation for the feedback controllercan be
considered as the compression of the virtual time scale. This
implies that the state variable is converged to zero by the
feedback control law given in (21) at the specified time .

Substituting the feedback control law into the original
linear system equation given in (1), the following second-order
differential equation can be obtained:

(22)

From (22), Euler’s equation with respect toand can be de-
rived as

(23)

Since the nonincreasing functionconverges to zero at finite
time , the necessary and sufficient condition to converge,

and to zero at the specified time is given depending on
the discriminant of the characteristic polynomial of (23)

as follows (see Appendix A):

if then p

if then p

where . Then, with the controller , each element of
the potential function reached zero at in the actual time
scale (see Appendix B).

Thus, it can be concluded that the feedback control law
(21) designed by the proposed method can regulate the dynamic
behavior of the robot and the convergence time to reach the goal.
Since the maximum torque until the robot reaches the goal po-
sition can be computed with the TBG dynamics beforehand, it
is also possible to cope with the torque limited problem by ad-
justing the movement time to the goal.

IV. TRAJECTORYGENERATION OF A MULTI-JOINT

REDUNDANT MANIPULATOR

A redundant manipulator which possesses extra degrees of
freedom to execute a given task has a desirable feature that may
lead to more dexterity and versatility of robot motions. Research
activities on the resolution of redundancy have been increased
in terms of how to determine a manipulator configuration that is
constrained to generate a specified end-effector trajectory from
the initial position to the target position by optimizing var-
ious secondary criteria such as singularity avoidance, obstacle
avoidance and various measures of dexterity [22]–[25]. On the
other hand, a force/torque relationship of the manipulator has
been pointed out by Khatib [26]. He pioneered the use of the
null space on the force/torque transformation in order to control
the internal joint motion of the redundant manipulator. In this
section, the general approach described in the previous section
is applied to the on-line spatio-temporal path planning problem
of the end-effector with significant advantages of redundancy
by utilizing the force/torque relationship.
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Fig. 4. Ann-joint redundant manipulator.

A. Dynamics of Redundant Manipulators

The joint space motion equation of andegree-of-freedom
manipulator whose end-effector is operating in thedimen-
sional task space, as shown in Fig. 4, can be expressed as

(24)

where is the joint angle vector; is the
nonsingular inertia matrix; is the nonlinear term
including the joint torque due to the Coliolies and centrifugal
force; is the joint torque due to gravity; and
is the joint torque vector. On the other hand, the dynamics of the
end-effector can be written in the operational space as [26]

(25)

where is the current end-effector position; is
the end-effector force vector;

is the operational space kinetic energy matrix;
is the Jacobian matrix; and also

When a manipulator possesses extra degree-of-freedom to ex-
ecute a given task, i.e., , the joint torque of redundant
manipulators can be decomposed into two elements: the joint
torque e�ector to operate the end-effector and the joint
torque to control the additional freedom of joint
motion with redundancy of a manipulator. In this case, there
exists the following force/torque relationship between the joint
torque e�ector and the operational force:

e�ector (26)

On the other hand, the joint torque always satisfies the
following condition given by

(27)

This equation implies that the joint torque must lay in the
null space associated with the matrix so as not to produce
any acceleration at the end-effector. The general solution
for this condition given by

(28)

Fig. 5. Block diagram of the feedback control system for a redundant
manipulator.

where is an arbitrary dimensional vector; and
defines the mapping to the null space associated

with . Consequently, the total joint torquefor a redundant
manipulator can be recomposed from (26) and (28) as follows:

e�ector

(29)

In this paper, the feedback control law for operating the
end-effector to the target point and for controlling addi-
tional freedom of motion of a manipulator are designed with the
proposed method, respectively. The total joint torque composed
of those designed controllers allows a redundant manipulator
to perform a given task by utilizing arm redundancy efficiently.
Fig. 5 shows the block diagram of this feedback system of the
redundant manipulator.

B. Derivation of the TBG Built-In Controller

The two dynamic equations in the joint space (24) and in the
operational space (25) can be rewritten into the following linear
system with the state variable as

(30)

(31)

(32)

where is the zero matrix and
is the unit matrix.

The system given in (30) can be rewritten in the virtual time
scale as follows:

(33)

where

(34)

(35)

(36)

As previously defined in the relationship between actual time
and virtual time given in (13), stability of the time scaled system
given in (33) is the same as the original system in the actual time
[21]. Hence, there exists a feedback control law to stabilize the
time scaled system asymptotically.
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The potential function with quadratic form e�ector for the
control of the end-effector to the target positionin the virtual
time scale can be defined as follows:

e�ector (37)

where diag under .
Designing the feedback control law based on e�ector as

(38)

we have the time-derivative of the potential functione�ector in
the new time scale as follows:

e�ector

(39)

By inverse transformation of time scale from the virtual time
to the actual time for the controller with (34) and (35), the
controller in the actual time is derived as

t
(40)

From (31) and (40), the feedback control law for control
of the dynamic behavior of the end-effector can be obtained as
follows:

(41)

The end-effector of the manipulator is controlled to the target
position at the convergence timeby means of the joint torque
e�ector equivalent to the feedback control law given in (41).

For a redundant manipulator, however, the joints may continue
to move although the end-effector arrives at the target posi-
tion since the designed controller can not control the extra
freedom of joint motion directly. For this problem, we utilize
the null space on the force/torque transformation [26] to control
the internal joint motion. Here, the potential function to
derive the feedback controller in the virtual time is defined
as

(42)

where diag under ; is
the differentiable potential function in the virtual time scale;
and is a positive nonincreasing scalar function. The first
term on the right side of (42) is used in order to dampen the
redundant joint motion when the end-effector arrives at the goal
and the second one is used to realize the desired posture of the
manipulator corresponding to the minimum of the potential
functionQ . It should be noted that the potential function

can be maximized under the negative nondecreasing
coefficient function . Differentiating the potential function

with respect to virtual time yields

(43)

With the new system (33) and the above (43), the time-deriva-
tive of the potential function in the virtual time can be
represented as

(44)
Designing the feedback controller with the nonincreasing
scalar function in the new time scale as

(45)

we can have

(46)

This indicates that the potential function is stabilized to
the equilibrium point by means of the feedback controllerin
the virtual time scale.

Then, we define the nonincreasing function in the new
time scale as

(47)

Through the inverse time-scale transformation from virtual time
to actual time for the controller with (34) and (36), the feed-
back control law in actual time is derived as

(48)

where is a positive constant. From (32) and (48), the fol-
lowing feedback controller can be derived as

(49)

When the joint torque (49) is selected as in (28), the joint
torque to control the internal joint motion of the redundant
manipulator can be computed.

The total feedback control law (29) composed of the de-
signed controllers given in (41) and (49) can lead the end-ef-
fector to the target position at the specified timeand may
attain the desired posture by utilizing the redundancy of the ma-
nipulator effectively without altering the configuration of the
end-effector.

C. Computer Simulations

The proposed trajectory generation method is applied to
a redundant manipulator with the TBG given in (6). Fig. 6
shows the simulation results with a three-joint-planar ma-
nipulator. The initial posture of the manipulator is

rad and the target position of the
end-effector is m with the convergence time

s under , and the gain .
The gain matrices in the potential functions
are set as diag , diag and

diag , respectively. The computer simula-
tions were executed with the Appel method for the manipulator
dynamics [27] and the link parameters of the manipulator as
shown in Table I.
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Fig. 6. Motion profiles of the three-joint planar manipulator generating trajectory with the different positive functionsQ (q) (i = 1; 2; 3).

TABLE I
LINK PARAMETERS OF ATHREE-JOINT PLANAR MANIPULATOR

Fig. 6(a) shows the generated trajectory with the potential
function set at

(50)

which means that arm redundancy is not utilized. On the other
hand, the joint angle control of the first joint and the maximiza-
tion of the manipulability [24] are considered as a subtask in
Fig. 6(b) and (c), respectively. In these cases, the potential func-
tions are given as

(51)

det (52)

where the target angle of the first joint is specified as
rad. For the maximization of , we use the negative

nondecreasing function

(53)

instead of (47). It can be seen that the generated trajectories
are influenced by the corresponding potential functions
defined above. Also, the third joint of the manipulator is out-
stretched while the end-effector reaches the target position in
Fig. 6(a). In contrast, the end-effector reaches the target position
without any singular configurations by utilizing the redundancy
control of the manipulator corresponding to local optimization
of the potential functions in Fig. 6(b) and (c). Fig. 7 shows
the time histories of and . It can be seen that each
potential function in Fig. 6(b) and (c) is optimized much better
than other cases, respectively.

Fig. 8 shows the time history of the end-effector position,
velocity and the squared sum of the joint angular velocity.
It should be noticed that all generated trajectories of the end-
effector in Fig. 6 completely coincide with the one depicted in
Fig. 8(a). It can also be observed that the end-effector reached
the target position along the smooth trajectory and that the joints

Fig. 7. Time histories of the positive functionQ (q) (i = 1; 2; 3). (a) Case 2
and (b) Case 3.

of the manipulator did not move any longer after the specified
time s in all cases.

Next, a trajectory generation of a four-link-planar manipu-
lator with link parameters given in Table II is simulated in the
polar coordinate task space, where the origin is set atP

m [see Fig. 9(a)]. Thus, the task coordinates of the
end-effector consist of the anglebetween a vector from the
point to the current end-effector’s position and the distance
between and the current position of the end-effector. The ini-
tial conditions of the manipulator are rad m
and rad. Also, the target position
of the end-effector is set at rad m with the
specified convergence time s .

Fig. 9 shows the generated spatio-temporal trajectories
with maximization of the manipulability defined
by (52) under the gain matrices diag ,

diag , diag . It can be
seen that the circular spatio-trajectory (dotted line) is generated
without any singular configurations and the joints do not move
after the specified time s .

V. TRAJECTORYGENERATION OF AUNICYCLE-LIKE VEHICLE

Control of a mobile robot with nonholonomic constraints has
received a great deal of attention [28]. For closed loop control
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Fig. 8. Dynamic behavior of the manipulator generating trajectory: (a) end-
effector position, (b) end-effector velocity, and (c) squared sum of joint
velocities.

on the basis of a kinematic model of a mobile robot, Samson
[29] and Pomet [30] proposed a feedback law using periodic
time functions and showed that a mobile robot with two driving
wheels can be positioned at the given final configuration for any
initial condition. Although the smooth time-varying feedback of
this approach can assure the stability of the system, slow conver-
gence is a practical defect. Then, Canudas de Wit and Sørdalen
[31] proposed a piecewise smooth feedback law using a discon-
tinuous controller and proved the exponential stabilization of the
mobile robot. Also, Badreddin and Mansour [32] showed that a
special selection of the polar coordinate system representing the
position and orientation of the mobile robot allows us to derive
a smooth stabilizing control law without contradicting the well
known work of Brockett [33]. Casalinoet al. [34] derived the
effective closed loop control law in the framework of the Lya-
punov stability theory, which can assure the global stability. In
this section, the trajectory generation method using the TBG is
applied to a unicycle-like vehicle, that is a mobile robot with
two driving wheels.

A. Model of a Unicycle-Like Vehicle

Fig. 10 shows a unicycle-like vehicle, where denotes the
world coordinate system (for a planar task space) andthe
moving coordinate system fixed to the vehicle with the origin of

set between two wheels and axis oriented as the direction
of motion of the vehicle. Thus, we can choose the following
generalized coordinates of the vehicle: position ( ) and
orientation angle of with respect to .

Fig. 9. Motion profile of the four-joint planar manipulator generating
trajectory in the polar coordinates: (a) stick pictures, (b) potential function, and
(c) squared sum of joint velocities.

TABLE II
LINK PARAMETERS OF AFOUR-JOINT PLANAR MANIPULATOR

Fig. 10. Unicycle-like vehicle.

The kinematics of the vehicle can be described by the fol-
lowing relationship between the time derivative of the general-
ized coordinate vector and the linear and the
angular velocities of the vehicle :

(54)
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where

(55)

and the following kinematic constraint must be satisfied [it can
be easily derived from (54)]:

(56)

B. Derivation of the Control Law

Our purpose is to derive a control law that automatically
drives the vehicle from the initial configuration to the target
configuration. Without any loss of generality, the origin of the
world coordinate system can be set at the target position,
with the axis directed as the desired final orientation of the
vehicle (see Fig. 11).

The piecewise smooth feedback control law proposed by
Canudas de Wit and Sørdalen [31] uses the family of circles
that pass through the origin and the current position of the
vehicle and contacts with the axis at the origin as shown
in Fig. 11. In the figure, represents the tangential direction
of this circle at the position belonging to . Their
control law is based on the idea that the arc length from the
origin to the current position should be decreasing and the
current angular orientation of the vehicle should agree with the
tangential direction . In our approach the distancefrom the
current position to the origin is used instead of the arc length.

Let denote the angle between the tangential directionand
the current angular orientationwith the intention of designing
a control law which can eliminate this kind oforientation error
together with the correspondingpositional errorfrom the target
denoted by the distance. The following coordinate transfor-
mation from to is then introduced
[31]:

(57)

(58)

where

(59)

(60)

and is a function that takes an integer in order to satisfy
. Also, is the scalar function defined as

, where denotes the imaginary unit
and denotes an argument of a complex number. As a result,
the current state of the vehicle can be represented by

(61)

and the target configuration of the vehicle is transformed to
. As a result of such coordinate transformation

, the target configuration of the vehicle can be ex-
pressed as .

Fig. 11. Coordinate transformation.

In order to derive the control law which can stabilize the
system to the target, we can write, first, the relationship between

and

(62)

where

Substituting (54) into (62), we have the relationship between
and the system input

(63)

where

(64)

(65)

(66)

It can be found that the number of state variables is reduced to
the same number as the system input.

Then, by the time scale transformation for the derived system
given in (63), the system can be rewritten in the virtual time
scale as follows:

(67)

where

(68)

For this time scaled system, the following potential function can
be defined:

(69)

where and are positive constants.
By designing the feedback control law based on the po-

tential function as

(70)



TSUJIet al.: BIO-MIMETIC TRAJECTORY GENERATION OF ROBOTS VIA ARTIFICIAL POTENTIAL FIELD WITH TIME BASE GENERATOR 435

the time-derivative of in the new time scale yields

(71)

Through the inverse time-scale transformation from virtual time
to actual time for the designed feedback controller with

APFA, we can derive the following control law for the original
system (63)

(72)

under the assumption of det except at the target posi-
tion.

Substituting the control law (72) into the system (63) yields

(73)

(74)

Solving the above differential equations, the dynamic behavior
of the system state can be given by

(75)

(76)

where and are the initial values of and , respectively.
It can be seen that thedistance error and theangular error
decrease by the ( )th power of under the control law (72).

Moreover, the time derivation of the potential functionwith
the derived feedback controller (72) in the actual time scale
yields

(77)

Solving the above differential equation with respect to, can
be represented with the TBGas

(78)

where is the initial value of . Thus, it should be
noticed that the potential function is “synchronized” with the
TBG because is proportional to the th power of . Since
reaches zero at so must : in other words, the robot is bound
to reach the target position of the vehicle exactly at .

C. Computer Simulations

1) Generation of Straight Trajectories:First of all, let us
consider the case at , i.e., the initial position
is on the axis and the initial orientation is rad as
shown in Fig. 12.

In this case, it can be seen from (58)–(60) and the proposed
control law (72) that is always zero, since in (66) with

. As a result, the vehicle moves in a straight line along
axis ( ). Thus yielding , the position
of the vehicle is proportional to the ( )th power of

(79)

Fig. 12. Generation of a straight trajectory.

Fig. 13. Straight trajectories with a bell-shaped velocity profile generated by
the proposed method of coordinated speed-steering control.

Fig. 13 shows the time histories of and generated by the
proposed method for the initial position of the vehicle (

m m rad ) and the bell-shaped velocity TBG
defined by (6), where three different convergence times were
used ( s ) and the power parameters
and . It should be noted that the coordinate and the
orientation of the generated trajectory are always zero. It can
be observed that the proposed method can naturally generate a
straight path of the vehicle with an easily controllable transient
response via the parameters of the TBG.

2) Generation of Curved Trajectories:Figs. 14 and 15 show
the results generated by the proposed method of coordinated
speed-steering control for several initial conditions located at
different points on a circle with a 10 [m] radius: the initial ori-
entation angle is rad in Fig. 14 and 0 [rad] in Fig. 15,
respectively. The TBG given in (6) parameters are s ,

, .
It can be observed that the control law (72) becomes

singular when the term goes to 0. From (65), it is
clear that such singularity occurs in the case where the
orientation vector of the vehicle is orthogonal with respect
to the vector which joins the current to the target position.
We tested the property of the control mechanism in the
neighborhood of the singular configurations by carrying out
a number of simulations with initial conditions very close
to singularity. Some of them are included in Figs. 14 and
15: two trajectories starting from locations close to the
axis in Fig. 14 ( m m rad
and m m rad ) and
two trajectories starting from points close to the axis
in Fig. 15 ( m m rad and

m m rad ). In all cases, it
can be observed that the actual trajectories are repulsed from
the singular configuration and the vehicle can arrive at the
target position in a smooth way without any forward/backward
oscillatory movement.
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Fig. 14. Trajectories generated by the control law when the vehicle is initially
located on a circle in thex -y plane with� = �=2 [rad]. (The arrow denotes
the initial orientation� .).

Fig. 15. Trajectories generated by the control law when the vehicle is initially
located on a circle in thex -y plane with� = 0 [rad]. (The arrow denotes
the initial orientation� .).

Fig. 16. Generation of a circular trajectory.

3) Regulation of Transient Properties:Let us suppose that
the initial orientation agrees with the tangential direction of
the circle passing through the initial position and the origin as in
Fig. 16. From (58) and (72), it can be obtained that and

(80)

Also, the radius of the circle defined at the initial position
can be calculated as

(81)

Fig. 17. Regulation of transient behaviors with the different sets of (� ,
� ) where the initial position of the vehicle isx = [5

p
2 [m]; 5

p
2 [m];

�=2 [rad]] .

and using simple trigonometric relations ( and
) the expression (66) of the gain

can be transformed in the following way:

(82)

which indicates that the gain becomes a constant in this situa-
tion. As a consequence, the vehicle approaches the target sliding
on the circle and reaches it in the planned convergence time.

Here, in such a special case of circular paths, regulation of
temporal trajectories is executed by means of the following ad-
justed TBG as

(83)

where are positive constants under .
When , the dynamics reduces to the TBG defined in
(6).

Fig. 17 shows the time histories of the coordinate and the
linear velocity with the parameters

under the initial configuration
m m rad . The outputs of the

proposed controller are compared with the results of the method
by Canudas de Wit and Sørdalen [31] (the fine lines). It can
be observed that our method generates the smoother temporal
trajectories with the different bell-shaped velocity profiles by
changing , which converge to the target in the appointed time

, while the latter method tends to approach the target with a
progressive slowing down after an initial jerk.

With the change of the parameterin (12), the dynamic
behavior of the robot can be also regulated as shown in Fig. 18,
where the initial configuration was set at m

m rad . As is smaller, the robot approaches the
target more gradually and peak positions of velocity profiles
move to the specified convergence time. On the contrary, as

is larger, the robot moves to the target more quickly.
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Fig. 18. Regulation of transient behaviors with the change of the parameter
p where the initial position of the vehicle isx = [5

p
2 [m]; 5

p
2 [m];

�=2 [rad]] .

It should be noticed that, in the proposed method, the gener-
ating velocity profile of robots can be changed only by adjusting
the dynamics of TBG which is made to synchronize with the po-
tential function. Feedback gains in the designed controller and
the TBG parameters (, ) are determined with consideration of
their influences on the stability and the response of robot motion
according to a task space and a given task for the robot. Future
research will be directed to establish a way to determine con-
crete values of the parameters.

4) Response to External Disturbances:At first sight, the
proposed method might appear to be a kind of open loop control
if we consider that, as the consequence of the control law, the
resulting path is described by (75) and (76). However, this is
not the case, as it is clearly shown by the simulation illustrated
in Fig. 19, in which an external disturbance was applied during
movement, suddenly displacing the position of the vehicle:
after the vehicle starts from the same initial configuration of
Fig. 17, coordinate is externally changed to m at
time s . It should be noted that the large disturbance
which may not arise actually is given to the moving robot in
order to stress the robustness of the proposed method. It can
be seen from the figure that the resulting trajectory, following
the disturbance but keeping the same control law, is still able to
smoothly converge to the target in the planned time.

In fact, the initial values and which appear in (75) and
(76) are not computed explicitly in our method but are natural
consequences of the feedback control law, which is able to com-
pensate the effect of the external disturbance. Accordingly, even
if (75) and (76) are violated by applying the external distur-
bance, the proportional relationship itself is preserved and the
vehicle converges to the target position at the timespecified
in the TBG.

From the simulation experiments, it can be seen that the de-
signed controller with the proposed method has the robustness
for external disturbance under the ideal condition. In the case of
controlling a real robot, however, large torque beyond expecta-
tions would be generated in order to realize the desired motion

Fig. 19. Generating trajectory when the position of he vehicle is disturbed
externally att = 0:5 [s]: (a) spatial trajectory in thex -y plane, (b) temporal
trajectory, and (c) velocity profile.

because of friction and modeling error of the system. It is nec-
essary to carry out experiments with a real robot.

VI. CONCLUSIONS

In this paper, the trajectory generation method on the basis
of the artificial potential field approach has been proposed. The
method has the built-in time function generator called theTime
Base Generator, defined for a model of human arm movements,
by synchronization of the time course of the potential function
used as an artificial potential field with the TBG. The method
can generate a bio-mimetic trajectory for robots with a bell-
shaped velocity profile, which is the minimum jerk trajectory
as Flash and Horgan [35] have proposed and can regulate the
transient response such as the movement time and the velocity
profile of the generating trajectory.

Then, the method was applied to the trajectory generation
problem of the redundant manipulator and the unicycle-like ve-
hicle. It was shown that the proposed method matches other con-
trol strategies such as the utilization of the arm redundancy and
the piecewise smooth feedback law for the nonholonomic ve-
hicle. Also, it had been already shown that the method using
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TBG is effective for the obstacle avoidance problem [18], [19]
as the previous methods [3]–[13].

The method proposed here can be utilize for coordination of
multiple robots since it can regulate the temporal trajectory as
well as the spatial trajectory of the robots. Future research will
be directed to develop an algorithm of parameter adjustment
with consideration of the torque limited problem and to analyze
robustness of the proposed feedback controller against distur-
bances including experiments with a real robot.

APPENDIX A
CONDITION OF THE SYSTEM CONVERGENCY

Solving the derived nonlinear differential (23) with respect
to each component of the system variable ,
the dynamic behavior of is represented according to
the discriminant of the characteristic polynomial of (23)

as follows.

A) if

(A-1)

B) if

(A-2)

C) if

(A-3)

is an initial value of and . Taking account of the
definition that as , the following necessary and
sufficient condition to bound, and at the convergence time

can be obtained depending on as follows:

1) if then p
2) if then p

APPENDIX B
DYNAMIC BEHAVIOR OF THEPOTENTIAL FUNCTION

The time-derivative of the potential function for the new
system in the actual time scale yields

(B-1)

With differentiating and substituting (A-1), (A-2) and (A-3) into
(B-1), the potential function for each of component variables

can be derived according to as follows:

A) if

(B-2)

B) if

(B-3)

C) if

(B-4)

where . It should be noticed that the po-
tential function is composed of (TBG) in all cases. Thus,
the dynamic behavior of is directed by the TBG to con-
verge toward zero at the specified timeunder the conditions
with respect to the parametersince and also

.
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