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SUMMARY

This paper proposes a pattern classi"cation method of time-series EMG signals for prosthetic control. To
achieve successful classi"cation for non-stationary EMG signals, a new neural network structure that
combines a common back-propagation neural network with recurrent neural "lters is used. A convergence
time of the network learning can be regulated by a new learning method based on dynamics of a terminal
attractor. The experiments of pattern classi"cation and prosthetic control are carried out for several subjects
including an amputee. It is shown from the results that the proposed method improves learning/classi"ca-
tion ability for stationary and non-stationary EMG signals during a series of continuous motions.
Copyright ( 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

Since every motion of a human operator is realized by muscular contraction controlled by the
central nervous system (CNS), EMG signals accompanied by muscular contraction involve
information on muscles contributing to the motion. If the information on human operator's
intended motion can be extracted from the EMG signals, it may be used as a new interface tool
for virtual reality and teleoperation devices, or as a communication tool for a handicapped
person. For example, in the case of a physically handicapped person who has his or her upper
limb amputated by an accident, if the CNS and a part of the muscles which have actuated the
original limb still remained after amputation, it can be expected that the natural feeling of
prosthetic control similar to that of the original limb is realized using the EMG signals.

Until now, many investigations of EMG pattern classi"cation were carried out for prosthetic
control. In the early days, a linear prediction model for EMG signals such as an autoregressive
(AR) model [1}4] was frequently used. However, it is very di$cult to achieve high classi"cation
performance stably, especially for rapid movements, because of non-linear characteristics and



large variability of the EMG signals. The non-linear characteristics are caused by interference
between di!erent muscles, and changes of signal sources and paths to recording electrodes. Also,
the EMG signals change largely depending on muscle fatigue, sweating and changes of electrode
location.

On the other hand, several EMG pattern classi"cation methods using neural networks have
been proposed [5}9]. The neural networks can acquire any non-linear mapping of training data
through learning. For example, Kelly et al. [5] proposed a pattern classi"cation method which
combines a back-propagation neural network [10] and a Hop"eld neural network. This method
can acquire a mapping from the EMG patterns measured from one pair of electrodes to four
motions of elbow and wrist joints. Also, Hiraiwa et al. [6] used a back-propagation neural
network for estimation of "ve "nger motions. They reported that the "ve "nger motions, joint
torque and angles were successfully estimated. Koike et al. [8] constructed a forward dynamics
model of the human arm between EMG signals and arm trajectories in their form of neural
network. In their experiments, four joint angles, one at the elbow and three at the shoulder, were
estimated from surface EMG signals of 12 #exor and extensor muscles during posture control in
3D space. However, in the case of EMG pattern classi"cation using common back-propagation
neural networks, the networks need a large number of training data and learning iterations as
well as a large scale of the structure [5}8].

Then, Tsuji et al. [9] proposed a probabilistic neural network for the EMG pattern classi"ca-
tion problem in order to improve the back-propagation learning. This network can construct the
statistical model of the EMG signals through learning, and improve classi"cation ability.
However, this network does not take into account time-varying characteristics of the time-series
EMG signals, so that the classi"cation performance may decrease depending on the non-
stationarity of the EMG signals. For time-series EEG signals, we have proposed a pattern
classi"cation method utilizing a new network structure which combines a probabilistic neural
network and a recurrent neural "lter [11}14]. The time-varying characteristics can be taken into
account by the neural "lter, and this re"nement improves classi"cation ability. This study,
however, dealt with a few of very simple classi"cation problems which include only two states
such as eye opening/closing and turning on/o! of the arti"cial #ash light in front of the eyes. Also
it was di$cult for the network to converge the learning process because of the complex network
to converge the learning process because of the complex network structure.

The purpose of this paper is classi"cation of non-stationary EMG signals during the continu-
ous motions in a short-time period. It is too di$cult for only one network to learn non-stationary
EMG signals because of the local minima problem, accuracy of the classi"cation and so on.
Therefore, signal processing is divided into two parts: (1) pattern processing in each time interval,
and (2) "ltering based on the time history of the pattern series. Then, corresponding to two parts,
a new network structure which combines the BPN and the NF is proposed. As a result, the whole
process can be executed e$ciently although the structure may become rather complicated. For
the learning of the proposed network structure, this paper invents a new learning method which is
called terminal learning in order to make the learning process smooth. The dynamics of the energy
function always converges stably to the equilibrium point in "nite time using this method. Also, it
is possible to synchronize the learning process of multiple networks. The convergence time is
always less than the prespeci"ed upper limit, so that the mental stress of the operator may be
reduced while waiting for the convergence. Moreover, the entropy of the network output is
de"ned and used in order to suspend the classi"cation for the network output with high entropy,
which results in reduction of misclassi"cation.
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Figure 1. Structure of the proposed network.

This paper is organized as follows: The structure of the proposed network and the terminal
learning method are explained in Section 2. The experiments of pattern classi"cation and
prosthetic control are conducted in Section 3 using two kinds of time-series EMG signals: one is
stationary EMG signals which are measured while keeping one motion, and the other is
non-stationary EMG signals measured while changing motions continuously. Finally Section
4 concludes the paper.

2. PATTERN CLASSIFICATION METHOD

2.1. A network structure

Figure 1 shows the structure of the proposed network, which consists of a pre-processing part,
a back-propagation neural network (BPN), a neural "lter (NF) and a discrimination part. First,
the EMG signal EMG

i
(t) (i"1,2,¸ ) is pre-processed and converted into the input feature

vector X(n )3RL (n"1,2,N). Next, the BPN receives it and outputs (D)O (n)3RK (n"1,2,N).
Then, the NF modi"es this output taking into account the time-varying characteristics of the
EMG signals. The outputs of the NF are normalized to make the sum of K outputs equal 1. Thus,
they are considered as the posteriori probability. Finally, the Bayes decision rule is used to
determine a speci"c class that corresponds to the most-likely motion intended by a human
operator out of K candidates of the motions.

(1) Pre-processing part: The time-series EMG signals EMG
i
(t) (i"1,2,¸) measured from

the ¸ electrodes are digitized by an A/D converter (sampling frequency, 1 kHz; and quantization,
12 bits) after they are ampli"ed, recti"ed and "ltered out through the Butterworth "lter (cut-o!
frequency: f

#65
Hz). Then these digitized signals are sampled every t

$
"10 ms and normalized to

make the sum of ¸ channels equal 1. The sampling data are used as the input feature vector
X(n)"[X

1
(n), X

2
(n),2, X

L
(n )]T for the BPN.

It should be noted that the characteristics of the input feature vector change depending
on the cut-o! frequency of the Butterworth "lter in pre-processing part, which in#uences
the network learning and classi"cation. Therefore, the cut-o! frequency must be settled
appropriately in order to extract the time-varying characteristics of the time-series EMG
signals.
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Figure 2. The back-propagation neural network.

(2) Back-propagation neural network: Figure 2 shows the structure of the BPN, which is of
a feedforward type with D layers. The input feature vectors at each time are classi"ed one by one
using this network. The ith layer consists of M

i
units for i"1, 2,2,D. The number of units in the

"rst layer and the Dth layer are M
1
"¸, M

D
"K. In the "rst layer, the identity function is used

for the activation function of each unit.
The units in the "rst layer receive the nth input feature vector X(n) as (1)S(n) and outputs the

same value as (1)o(n). The input/output of the ith unit in the dth layer are de"ned as

(d)s
i
(n)"

Md~1

+
j/1

(d~1,d)=(d~1)
ij

o
j
(n) (1)

(d)o
i
(n)"

1

1#exp (!(d)s
i
(n))

(2)

where (d)s
i
(n) and (d)o

i
(n) (d"2, 3,2, D) denotes the input/output of the ith unit in the dth layer,

and (d~1,d)=
ij

denotes the weight coe$cient between the jth unit in the (d!1)th layer and the ith
unit in the dth layer.

(3) Neural ,lter: The outputs of the BPN may vary largely because of #uctuation of the EMG.
Therefore, the NF is connected to the Dth layer of the BPN in order to take into account the time
history of the EMG signals. The NFs receive the output of the BPN and makes it smoother. The
characteristics of the NF can be changed #exibly through learning. This is a di!erent feature from
the conventional digital "lters.

In order to deal with the time-series signals, several kinds of network structure may be suitable
for the NF. In our case, the NF deals with a simple signal processing with only one input/output
data, so the simple and compact structure is desirable. Lo [14] used a recurrent multilayer
perceptron (RMLP) with one hidden layer of fully interconnected neurons for neural "ltering. He
called such a RMLP the neural ,lter. Simulation results showed that the NF with only a few
hidden neurons consistently outperforms the extended Kalman "lter. This NF is incorporated
into the proposed network.
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Figure 3. The neural "lter.

The structure of the neural "lter is shown in Figure 3 [14]. The unit in the "rst layer receives the
nth output (D)o

k
(n) of the BPN, and send (1)v

k
(n) to the second layer. The identity function is used

for the activation function in the "rst layer.
The second layer consists B fully interconnected units. Each unit in the second layer receives

the nth output of the "rst layer and the (n!1)th output of the second layer. Also, each unit in this
layer has the bias input (h"1). This layer keeps the internal representation so that the time
history of the input data can be taken into consideration. The input to the unit b, (2)rb

k
(n), and the

output, (2)vb
k
(n), are de"ned as

(2)rb
k
(n)"

B
+
a/1

(2,2)uab(2)
k

va
k
(n!1)#(1,2)ub

k
(1)v

k
(n)#(h)ub

k
(3)

(2)vb
k
(n)"

1

1#exp(!(2)rb
k
(n))

(4)

where (2,2)uab
k

, (1,2)ub
k
and (h)ub

k
denote the weight coe$cients between the ath and the bth unit in the

second layer, between the unit in the "rst layer and the bth unit in the second layer, and between
the bias input and the bth unit in the second layer, respectively. The unit in the third layer receives
the output of all the units in the second layer. The input (3)r

k
(n) and the output>

k
(n) of the unit is

de"ned as

(3)r
k
(n)"

B
+
b/1

(2,3)ub
k
(2)vb

k
(n) (5)

>
k
(n)"

1

1#exp(!(3)r
k
(n))

(6)

where (3)r
k
(n) and >

k
(n) denote the input and the output in the third layer, and (2,3)ub

k
denotes the

weight coe$cient between the bth unit in the second layer and the unit in the third layer.
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(4) Discrimination part: First, the K outputs of the NF are normalized to make the sum of the
outputs equal to 1 and considered as the a posteriori probability. Then the entropy is calculated
from this posteriori probability, and the classi"cation is performed using this entropy [7]. When
the BPN receives an input feature vector X(n) and each NF outputs >

k
(n) (k"1, 2,2, K ), the

entropy H
/&

(n) is de"ned as

H
/&

(n)"!

K
+
k/1

p (k DX(n)) log p (k DX (n)) (7)

p (k DX (n))"
>

k
(n)

+K
k{/1
>

k{
(n)

(8)

The entropy indicates, or may be interpreted as, a risk of misclassi"cation. For example, if the
entropy is above the determination threshold h

$
, the determination should be suspended since

large entropy means that the network output is ambiguous. On the other hand, if the entropy is
less than h

$
, the Bayes decision rule is used to determine the speci"c class. Thus, possible

misclassi"cation is expected to be reduced.

2.2. Learning rule

In this section, the learning algorithm of the proposed network is explained. If the teacher signal is
given only to the output units in the NF, the error may back-propagate from the NF to the BPN,
so that the learning is performed for both the networks at the same time. However, the
appropriate error back-propagation between the NF and the BPN cannot be guaranteed because
of a serial structure of two networks. Therefore, we introduce the following two-step learning
schedule. The learning is e$ciently divided into the BPN and the NF so that the function of each
network becomes clear.

In the case of the back-propagation learning based on the steepest descent, the operator cannot
predict the convergence time of learning in advance, so that the mental stress of the operator
while waiting for the convergence may be increased. Therefore, this paper newly develops the
terminal learning method in order to make the learning process smooth. In the terminal learning,
the dynamics of the energy function always converges stably to the equilibrium point in "nite
time. The equilibrium point is a kind of terminal attractor which was discovered by Zak [15]. In
the terminal learning, the upper limit of the convergence time can be prespeci"ed. This reduces
the mental stress of the operator while he/she is waiting for the learning convergence. Also, the
learning of multiple networks can be synchronized roughly using this method.

(1) ¸earning schedule: First, the BPN is trained using the training data which are sampled
from the stationary EMG signals. The teacher signal ¹k

nn
(n) (k"1,2,K ) is given for each output

unit corresponding to the operator's motion.
After the learning of the BPN, another set of the input feature vectors X(n) is given and the

BPN outputs (D)o
k
(n) (k"1,2, K ), where the weight coe$cients in the BPN are not modi"ed.

Then, each NF is trained using this output data and the teacher signal ¹k
/&

(n) (k"1,2, K) given
for each output unit in order to construct a kind of the digital "lter.
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(2) ¸earning rule of the BPN: The teacher vector T
nn

(n)"[¹1
nn

(n),2,¹k
nn

(n),2,¹k
nn

(n)]T is
prepared for the nth feature vector X(n). In order to speed up the learning, the teacher signal is
given: ¹k

nn
(n)"1.1 for the particular unit and ¹k

nn
(n)"!0.1 for all the other units. As an energy

function of the network learning, we use

E
nn
"

1

2

N
+
n/1

K
+
k/1

((D)o
k
(n)!¹k

nn
(n))2 (9)

and the learning is performed to minimize it. Each weight (d~1,d)=
ij

is considered as a time
dependent continuous variable and its time derivative is de"ned as

(d~1,d)=Q
ij
"!g

nn
c
nn

LE
nn

L(d~1,d)=
ij

(10)

c
nn
"

Ea
nn

+D
d/2

+Md

i/1
+Md~1

j/1 A
LE

nn
L(d~1,d)=

ij
B
2

(11)

where g
nn
'0 is a positive learning rate and a (0(a(1) is a constant. The time derivative of the

energy function E
nn

can be calculated as

EQ
nn
"

D
+
d/2

Md

+
i/1

Md~1

+
j/1
A

LE
nn

L(d~1,d)=
ij

(d~1,d)=Q
ijB

"!g
nn
Ea

nn
)0. (12)

It can be seen from (12) that E
nn

is a monotonically non-increasing function, and it always
converges stably to the equilibrium point (the global minimum or one of local minima). In this
case, the convergence time t

&nn
can be calculated as

t
&nn

"P
t&nn

0

dt"P
Enn(t&nn)

Enn(0)

dE

EQ

"

E
nn

(0)1~a!E
nn

(t
&nn

)1~a
g
nn

(1!a)

)

E
nn

(0)1~a
g
nn

(1!a)
(13)

where E
nn

(0) is the initial value of the energy function E
nn

calculated using initial weights, and
E
nn

(t
&nn

) is the "nal value of E
nn

at the equilibrium point.
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In this paper, learning is performed by a discrete form derived from (10):

(d~1,d)=
ij
(t#*t

nn
)"(d~1,d)=

ij
(t)#

*t
nn

2
((d~1,d)=Q

ij
(t)#(d~1,d)=Q

ij
(t#*t

nn
)) (14)

Weight modi"cation is carried out at every sampling time *t
nn

.
Also the entropy calculated from the output of the BPN is used during the learning in order to

speed it up. The entropy H
nn

(n) can be derived in the same manner as (7), (8):

H
nn

(n)"!

K
+
k/1

p (k DX (n)) log p(k D X(n)) (15)

p (k DX (n))"
(D)O

k
(n)

+K
k{/1

(D)O
k{
(n)

(16)

The network learning is continued until all of the entropy is less than the convergence threshold
he and there is no misclassi"cation for all training data.

(3) ¸earning rule of the NF: Next, the terminal learning of the NF is explained. The energy
function for the kth NF is de"ned as

(k)E
/&
"

1

2

N
+
n/1

(>
k
(n)!¹k

/&
(n))2 (17)

where ¹k
/&

(n) is the teacher signal for the output of the kth NF. The teacher signal is given:
¹k

/&
(n)"1.0 for the particular unit and ¹k

/&
(n)"0.0 for all the other units. The learning is

performed to minimize this sum of the squared errors. The weight coe$cients between the second
and third layers are modi"ed using the error back-propagation learning. The time derivative of
the weight coe$cient (2,3)uR b

k
can be derived as

(2,3)uR b
k
"!g

/&
c
/&

L(k)E
/&

L(2,3)ub
k

(18)

c
/&
"

(k)Eb
/&

t
(19)

t"

B
+
b/1
A

L(k)E
/&

L(2,3)ub
k
B
2
#

B
+
a/1

B
+
b/1
A

L(k)E
/&

L(2,2)uab
k
B
2
#

B
+
b/1
A

L(k)E
/&

L(1,2)ub
k
B
2
#

B
+
b/1
A
L(k)E

/&
L(h)ub

k
B
2

(20)

where g
/&
'0 denotes the learning rate and b(0(b(1) is a constant.

For the weight coe$cients in the "rst and second layers, the error back-propagation through
time [10] is used because of the interconnection in the second layer. In this case, the time
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derivative of the weight coe$cient (2,2)uR ab
k

in the second layer can be calculated as follows:

(2,2)uR ab
k
"!g

/&
c
/&

L(k)E
/&

L(2,2)uab
k

(21)

Note that the time history of the input data is considered back to C time steps for computation of
L(k)E

/&
/L(2,2)uab

k
. The time derivative of the weight coe$cient (1,2)uR b

k
, (h)uR b

k
can be derived in the same

manner as (21). The time derivative of the energy function (k)E
/&

can be calculated as

(k)EQ
/&
"

B
+
b/1
A

L(k)E
/&

L(2,3)ub
k

(2,3)uR b
kB#

B
+
a/1

B
+
b/1
A

L(k)E
/&

L(2,2)uab
k

(2,2)uR ab
k B

#

B
+
b/1
A

L(k)E
/&

L(1,2)ub
k

(1,2)uR b
kB#

B
+
b/1
A
L(k)E

/&
L(h)ub

k

(h)uR b
kB

"!g
/&
Eb
/&
)0 (22)

The convergence time t
&/&

can be easily calculated (see (13)), and the weight modi"cation is carried
out by a discrete form derived from (18), (21) at every sampling time *t

/&
.

3. EXPERIMENTS

3.1. Experimental conditions

The experiments of pattern classi"cation and prosthetic control are performed for four subjects:
one is an amputee, and the others are normal. The amputee was amputated at the forearm, 6 cm
from the left wrist joint, about six months ago. The BPN has D"3 layers, and the second layer of
the NF consists of B"8 units. The parameters of the terminal learning are set as t

&nn
"t

&/&
"1,

*t
nn
"*t

/&
"0.001, a"b"0.7, respectively.

The time-series EMG signals are measured from ¸"4 dry-type electrodes (Imasen lab.).
The electrode positions are shown in Table I, and the EMG signals were measured by the
bipolar derivation method. When the proposed network is used in a practical situation,
it is di$cult for the operator to attach the electrodes on the selected muscles. Therefore,
in this paper, the locations where the electrodes are attached are not speci"ed. For variable
locations of the electrodes, the proposed system can adapt itself using the neural network.
Possible electrode locations for EMG measurement may be limited for the case of
amputees because of the damage level of the muscles. Considering this point, for the normal
subjects, that is the pseudo-amputees, some experiments were carried out under the electrode
locations shifted at the unilateral (see Table I) in order to simulate the situation in which the
cross-type location is not available. On the other hand, for the amputee used in the experiment,
the cross-type electrode locations were available, so there was no need for us to try any other
electrode locations.

The experiments are conducted using two kinds of time-series EMG signals: one is stationary
EMG signals and the other non-stationary ones. In the former case, the subject was asked to keep
one motion, and the stationary EMG signals were measured. On the other hand, in the latter case,
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Table I. Electrode locations and the measured muscles.

Electrode locations No. 1 No. 2 No. 3 No. 4

Extensor
Digitorum
Communis

Extensor Carpi
Ulnaris

Flexor Carpi
Radialis

Palmaris
Longus

Extensor
Digitorum
Communis

Extensor
Digitorum
Profundus

Flexor Carpi
Ulnaris

Flexor Carpi
Radialis

Figure 4. Control system for prosthetic hand.

the subject was asked to change the motions continuously in approximately four second time
periods, while non-stationary EMG signals were measured. The purpose of the experiments was
explained to all the subjects, and the experiments were carried out with the content of the subjects.
This paper deals with the classi"cation of non-stationary EMG signals during the six speci"ed
motions. First, in Section 3.2, the experiments for stationary EMG signals are carried out in
order to regulate the network and learning parameters. Then, in Section 3.3, the time history
of the classi"cation results is taken into consideration using the NF in order to improve the
classi"cation performance. Also, comparison experiments are carried out using the conven-
tional BPN and the proposed method in order to make the di!erence clear between two
methods.

Figure 4 shows the prosthetic control system used in the experiments, which consists of the
pre-processing part, the BPN, the NF, the discrimination part, the robotic manipulator [16] and
its controller. The robotic manipulator has eight degrees of freedom and three of them are
controlled according to the output of the discrimination part, which results in six di!erent
motions, that is, wrist #exion, wrist extension, wrist pronation, wrist supination, hand grasping
and hand opening. The end-e!ector of the robotic manipulator is a prosthetic hand (Imasen lab.),
which is almost of the same size as the human hand. It is driven by the ultra sonic motors
(SHINSEI Corp.) so that the motor noise is signi"cantly reduced.

The mean values and the standard deviations of the classi"cation results for 10 kinds of initial
weights are shown in the following "gures and tables except for Figures 5 and 10.
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Figure 5. An example of prosthetic control using stationary EMG signals.

3.2. Experimental results for stationary EMG signals

Figure 5 shows an example of prosthetic control using stationary EMG signals (0.5 for each
motion). In this "gure, the motion pictures, the time-series EMG signals (EMG

1
,2, EMG

4
), the

classi"cation results of the BPN, the classi"cation results of the proposed network are shown. The
stationary EMG signals used in the "gure are measured from the amputee.

The convergence and determination thresholds are settled as he"0.2, h
$
"0.35, respectively,

and the cut-o! frequency f
#65

"9 Hz. The second layer of the BPN consists of M
2
"10 units. The

time history of the input data is considered back to C"3 time steps in the error back-
propagation learning through time.

The prosthetic hand can be controlled according to the classi"cation results of the proposed
network. A few misclassi"ed data are observed at the beginning of the wrist supination. In this
experiment, however, su$cient classi"cation is achieved using the BPN. Next, we examine the
classi"cation ability of the BPN and determine the appropriate parameters of the BPN.

(1) E+ect of the network parameters: First, we examine the e!ect of the convergence threshold
he on learning/classi"cation ability. Experiments are carried out using the BPN, and the time-
series EMG signals measured from the amputee are used.
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Figure 6. E!ect of the convergence threshold he on the learning/classi"cation ability of the BPN.

In the experiments, the convergence threshold he is changed from 0.1 to 0.6. The determination
threshold is h

$
"0.25, and the second layer of the BPN consists of M

2
"10 units. The cut-o!

frequency is settled as f
#65

"1 Hz.
Figure 6(a) shows the classi"cation rate including/excluding suspended motion and the number

of iterations, and Figure 6(b) shows the suspended and the misclassi"cation rates. It can be seen
that the number of learning iteration decreases as the convergence threshold he increases, and the
suspended rate considerably increases near he"0.3. Under the determination threshold
h
$
"0.25, the network keeps the classi"cation rate excluding suspended motions too high for the

convergence threshold he to be less than 0.3.
Next, we examine the e!ect of the determination threshold h

$
on classi"cation ability. In the

experiments, the determination threshold h
$

is changed from 0.05 to 0.6. The convergence
threshold is set as he"0.20, and the second layer of the BPN consists of M

2
"10 units. The

cut-o! frequency f
#65

"1 Hz is used.
Figure 7 shows the classi"cation results. It can be seen that the suspended rate decreases as the

determination threshold h
$

increases, and the classi"cation rates including and excluding the
suspended motions are almost the same for h

$
*0.4. On the other hand, the misclassi"cation
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Figure 7. E!ect of the determination threshold h
$

on the classi"cation ability of the BPN.

Figure 8. E!ect of the number of units in the second layer M
2

on the
learning/classi"cation ability of the BPN.

decreases by suspending classi"cation for h
$
)0.4, and the classi"cation rate excluding sus-

pended motion increases. Therefore, if the operator sets the determination threshold appropriate-
ly, it is expected that the misclassi"cation can be removed.

Also, Figure 8 shows the classi"cation results of the BPN, which indicates the changes of the
learning/classi"cation ability with the number of the units in the second layer M

2
from 4 to 25.

The convergence and determination thresholds are set as he"0.2, h
$
"0.25, respectively, and the

cut-o! frequency is f
#65

"1 Hz.
In the experiments, only small improvement of the learning/classi"cation ability depending on

the number of the units in the second layer is observed. Note that for a small number of units in
the second layer, the learning does not converge frequently.

Based on the above classi"cation results, the network parameters are determined as follows: the
convergence and determination thresholds are he"0.2, h

$
"0.25, respectively, and the number of
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Table II. Classi"cation results of stationary EMG signals for three subjects.

Experiments No. 1 No. 2 No. 3 No. 4

Subjects Normal A Normal A Normal B Amputee

Electrode locations

Classi"cation rate 99.86$0.34 99.98$0.05 98.65$0.53 88.89$1.26
excluding suspended
motions (%)

Classi"cation rate 93.27$1.01 94.23$1.26 69.17$2.73 77.62$2.70
including suspended
motions (%)

Suspended rate (%) 6.60$1.12 5.75$1.28 29.88$2.90 12.67$3.24

the second layer of the BPN is M
2
"10 units. Table II shows the experimental results for

three subjects, where the location of the electrodes is shown in the table. The classi"cation
results of the BPN are shown, and the cut-o! frequency in the pre-processing part is set as
f
#65

"1 Hz.
The network can classify six motions with an accuracy of about 90 per cent. In the experiment

nos. 3 and 4, however, the suspended rate increases high, so that the classi"cation rate including
suspended motions decreases remarkably.

(2) E+ect of the terminal learning: If a human subject performs continuous motions in a few
seconds, the sampled EMG patterns must be changed considerably depending on time. It is
necessary to use a sampled pattern as an input to the NN which contains frequency components
of the continuous motions. Therefore, we examine the changes of the classi"cation rate and
learning iterations depending on the cut-o! frequency f

#65
of the Butterworth "lter in the

pre-processing part.
The experiments are carried out using the common back-propagation learning rule shown in

Figure 9(a) and the terminal learning rule shown in Figure 9(b). Both experiments are performed
using the BPN and the time-series EMG signals measured from the amputee.

In Figure 9(a), the network keeps classi"cation rate high for any cut-o! frequency f
#65

. The
number of learning iterations, however, increases remarkably as f

#65
increases. In Figure 9(b), as

the terminal learning is used, the convergence time is always less than the upper limit of
a prespeci"ed time t

&nn
/*t

nn
"1000, while the classi"cation rate decreases slightly.

Table III shows the experimental results for three subjects using the common back-propaga-
tion learning rule and the proposed learning rule. The cut-o! frequency is f

#65
"9 Hz.

Both the networks can perform high classi"cation rates. However, in the case of the
common back-propagation learning rule, the learning iterations for the amputee's data
increase remarkably as shown in Table III(a). On the other hand, in the case of the terminal
learning, the convergence time is always less than the upper limit of the prespeci"ed number of
iterations 1000.
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Figure 9. E!ect of the terminal learning on the learning/classi"cation ability of the BPN.

Table III. E!ect of the terminal learning on the learning/classi"cation ability of the BPN.

Experiments No. 1 No. 2 No. 3 No. 4

Subjects Normal A Normal A Normal B Amputee

Electrode locations

(a) Back propagation learning
Classi"cation rate 95.1$1.3 96.3$0.8 89.7$0.8 93.4$0.5
including suspended
motions (%)

Misclassi"cation rate (%) 0.0$0.0 0.1$0.1 0.8$0.4 1.3$0.4

Suspended rate (%) 4.9$1.3 3.6$0.9 9.5$0.9 5.2$0.7

Number of iterations 769.2$56.8 760.0$45.7 621.5$81.0 3488.4$2201.1

(b) Back propagation learning using TA
Classi"cation rate 92.7$1.0 94.3$1.3 90.7$0.8 86.7$1.4
including suspended
motions (%)

Misclassi"cation rate (%) 0.0$0.0 0.0$0.1 1.2$0.4 0.4$0.2

Suspended rate (%) 7.3$0.9 5.6$1.3 9.2$0.7 13.3$1.3

Number of iterations 982.4$26.4 990.8$19.6 710.7$48.6 1000.0$0.0
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Figure 10. An example of prosthetic control using non-stationary EMG signals.

3.3. Experimental results for non-stationary EMG signals

Figure 10 shows an example of prosthetic control using non-stationary EMG signals. The
non-stationary EMG signals used in the "gure are measured from the amputee. The suspended
data are also plotted as one of the classi"cation results. If the sum of the squared EMG

i
(i"1,2, 4) is less than the threshold, it is considered that no motion appears. The determination
threshold is h

$
"0.25, and the time history of the input data is considered back to C"3 time

steps during the learning of the NF.
In the results with the BPN, many misclassi"ed data are observed, especially in the latter half

and immediately after switching the motions. On the other hand, the proposed method consider-
ably improves the classi"cation performance using the NF. This is the e!ect of the NF that can be
adapted for the time history of the classi"cation results.

Next, we examine the changes of the classi"cation rates with the cut-o! frequency of the
Butterworth "lter in the pre-processing part as shown in Figure 11. It can be seen from the "gure
that the classi"cation rate becomes worse with low cut-o! frequency f

#65
"1 Hz, since the

time-varying characteristics of the EMG signals caused by the motions are "ltered out in this
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Figure 11. E!ect of the cut-o! frequency f
#65

on the classi"cation ability of the proposed network.

Figure 12. E!ect of the time steps C of the BPTT on the classi"cation ability of the proposed network.

case. The NF that can take into account the time history of the output of the BPN improves the
classi"cation accuracy. In Figure 11, the classi"cation rates increased by 10}20 per cent using
the NF.

Figure 12 indicates changes of the classi"cation rate with the number of the time steps
C considered in the NF. The classi"cation rate of the BPN is also shown in the "gure, and the
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Table IV. Classi"cation results of non-stationary EMG signals for two subjects.

Experiments No. 1 No. 2 No. 3 No. 4

Subjects Normal C Normal C Amputee Amputee

Electrode locations

(a) BPN
Classi"cation rate 52.3$1.4 49.6$1.7 58.4$2.0 50.2$1.7
including suspended
motions (%)

Misclassi"cation
rate (%)

2.2$1.6 1.9$1.6 1.1$1.7 2.1$1.5

Suspended rate (%) 45.5$2.0 48.5$1.7 40.5$1.4 47.7$1.3

Number of iterations
(NNP)

884.5$19.1 984.6$32.1 1000.0$0.0 792.3$42.1

(b) Proposed network
Classi"cation rate 77.8$1.4 75.2$1.7 81.6$0.9 85.2$2.0
including suspended
motions (%)

Misclassi"cation
rate (%)

1.1$1.2 2.1$1.5 2.0$0.8 2.0$1.7

Suspended rate (%) 21.1$0.9 22.7$1.3 17.4$0.7 12.8$1.3

Number of iterations
(NNP)

884.5$19.1 984.6$32.1 1000.0$0.0 792.3$42.1

Number of iterations
(NFP)

1000.0$0.0 1000.0$0.0 1000.0$0.0 1000.0$0.0

cut-o! frequency f
#65

used is 1 and 9 Hz. In the case of f
#65

"1 Hz, the classi"cation rates tend to
improve with increase in the time steps. On the other hand, in the case of f

#65
"9 Hz, no

improvement of the classi"cation rates depending on the time steps is observed. This may be due
to the fact that the learning became di$cult for f

#65
"9 Hz, in which the "ltered EMG signals

varied largely.
To examine the e!ect of the NF on the classi"cation result, experiments are carried out

for two subjects. The electrodes for subject C are located on two di!erent positions shown
in Table IV. In the experiments nos. 3 and 4, the EMG signals are measured from the amputee
on di!erent days. Table IV shows the experimental results, where the cut-o! frequency
and the time steps of the BPTT are f

#65
"9 Hz and C"3 time steps, respectively. The pro-

posed network can achieve high classi"cation performance for all experiments and the
misclassi"cation rate is quite small under the determination threshold h

$
"0.25. On the

other hand, the classi"cation rates by the BPN decreased by 20}30 per cent for all the
subjects because the learning and classi"cation become considerably di$cult for non-stationary
EMG signals. Note that the convergence time is always less than the upper limit of a pre-
speci"ed time.
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4. CONCLUSIONS

The present paper proposed a new neural network for pattern classi"cation problems of the
time-series EMG signals. To classify the non-stationary EMG signals accurately, the proposed
network is combined to form two di!erent neural networks: one is a common back-propagation
neural network, and the other a recurrent neural "lter. Also, the terminal learning method is
newly developed in order to regulate the convergence time. To examine the classi"cation ability of
the proposed network, experiments were performed for several subjects using the stationary/non-
stationary EMG signals. The results obtained here are summarized as follows:

f The network structure and its learning method have been newly developed in order to classify
non-stationary EMG signals accurately while changing motions continuously.

f The operator can prespecify the learning convergence time using the terminal learning method.
f The continuous motions of the operator can be estimated from the time-series EMG signals

with su$cient accuracy.
f The prosthetic hand can be controlled using the operator's EMG signals.
f The neural "lter can take into account the time history of the input signal, and improve the

classi"cation accuracy. Especially, for non-stationary EMG signals, the classi"cation rates
increased by 20}30 per cent using this NF.

f Ambiguous classi"cations can be suspended based on the entropy of the network output. If the
operator sets the determination threshold appropriately, misclassi"cation can be eliminated.

In this paper, the NFs are connected to output units of the BPN individually in order to clarify
the role of each network and to simplify the network learning, so that mutual relations among the
BPN's outputs need not be considered. If we use the NF with multiple input/output units which is
connected to the output units of the BPN, this relation can be considered and the classi"cation
ability may be improved. Also, the determination suspension method based on the entropy may
suspend correct classi"cation if the operator sets the small value as the determination threshold.
Therefore the appropriate threshold must be determined depending on the measured EMG
signals. If this threshold can be set automatically, it should be e!ective for some practical
applications.
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