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Multi-Point Impedance Control 
for Redundant Manipulators 

Toshio Tsuji, Achmad Jazidie, and Makoto Kaneko, Member, ZEEE 

Abstract-The present paper proposes an impedance control 
method called the Multi-Point Impedance Control (MPIC) for 
redundant manipulators. The method can not only control end- 
effectorimpedance, but also regulate impedances of several points 
on the links of the manipulator, which are called virtual end- 
point impedances, utilizing arm redundancy. Two approaches 
for realizing the MPIC are presented. In the first approach, 
controlling the end-effector impedance and the virtual end-point 
impedances are considered as the tasks with the same level, and 
the joint control law developed in this approach can realize the 
closest impedances of the multiple points, including the end- 
effector and the virtual end-points to the desired ones in the 
least squared sense. On the other hand, in the second approach, 
controlling the end-effector impedance is considered the most 
important task, and regulating the impedances of the virtual end- 
points is considered as a sub-task. Under the second approach, 
the desired end-effector impedance can be always realized since 
the joint control torque for the regulation of the virtual end-point 
impedances is designed in such a way that it has no effect on the 
end-effector motion of the manipulator. Simulation experiments 
are performed to confirm the validity and to show the advantages 
of the proposed method. 

I. INTRODUCTION 
EDUNDANCY occurs when a robot possesses extra R degrees of freedom to execute a given task. This is 

a desirable feature that may lead to more dexterity and 
versatility of robot motions. Research activities focused on 
resolution of the redundancy have been increased, in particular, 
concerning the inverse kinematics, in terms of how to deter- 
mine a manipulator configuration that is constrained to follow 
a specified end-effector trajectory while optimizing various 
secondary criteria such as singularity avoidance, obstacle 
avoidance, and various measures of dexterity [1]-[7]. On the 
other hand, redundancy on a forcekorque transformation has 
been pointed out by [8] and [9]. Khatib pioneered the use 
of the null space on the forcekorque transformation to control 
the internal motion of the redundant manipulator [8]. Kang and 
Freeman [9] derived the null space damping method for several 
performance criteria. Also, using the concept of dynamic 
redundant degrees of freedom, Arai et al. [lo] has proposed 
a method to utilize the force redundancy for minimizing the 
joint torque. 
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When a robot performs a task that requires mechanical 
interactions with an environment or an object being manip- 
ulated, the robot has to develop a compliant motion in which 
the interaction force along the constrained direction should 
be controlled properly, so that the manipulator complies with 
the environmental constraints. Impedance control [ 111 is one 
of the most effective methods for the development of such 
compliant motion. This method has many desirable attributes 
such as an ability to come into contact with a hard surface 
without losing stability and an ability to specify directly the 
behavior of the mechanical interaction with the environment. 
The effectiveness and the robustness of the impedance control 
has been discussed and demonstrated in detail elsewhere by 
several researchers [ 121-[ 161. 

Up to the present, however, a few studies such as [17] by 
Newman and Dohring and [ 181 by Peng and Adachi have been 
reported utilizing kinematic redundancy in terms of impedance 
control using the extended Jacobian scheme proposed in [6]. 
In this scheme, a vector of new task variables is defined, 
the dimension of which is equal to the number of degrees 
of freedom of kinematic redundancy. This additional output 
vector is augmented to the end-effector position vector to 
make a corresponding Jacobian matrix square. Then, based 
on the augmented Jacobian matrix, an impedance control law 
was derived to achieve the desired end-effector impedance as 
well as to satisfy the secondary constraint. In [ 171, however, 
controlling end-effector inertia has not been taken into account. 
So, in fact, this method reduces to the active stiffness control 
[19]. On the other hand, in order to guarantee that the 
augmented Jacobian is always of full rank, Peng and Adachi in 
[ 181 have introduced a differentiable scalar objective function 
as a function of joint angles, the gradient of which is projected 
onto the null space of the end-effector Jacobian matrix. This 
leads to a control strategy that provides an impedance control 
for the end-effector as well as satisfies the optimal condition 
of the objective function. 

In this paper, an impedance control method called the Multi- 
Point Impedance Control (MPIC) for redundant manipulators, 
which has been originally proposed in terms of the compliance 
control [20] and developed in [21], is illustrated in a unified 
way. The proposed method can regulate the impedances of 
several points on the links of the manipulator while controlling 
the end-effector impedance In regards to the way of realizing 
the desired multiple point impedances, two approaches in the 
development of the MPIC are presented. 

In the first approach, the desired end-effector impedance and 
the desired impedances of several points are concatenated to 
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form a new desired impedance matrix that we want to realize. 
Implicitly, it means that controlling the end-effector impedance 
and the impedances of several points are considered as the 
tasks with the same level of importance. Then, the multi- 
point impedance control law is developed in terms of how 
to specify joint impedance matrices in order to achieve the 
desired multiple point impedances. Generally, the manipulator 
loses redundant joint degrees of freedom as the number of 
points that we want to regulate their impedances is increased, 
and finally it becomes over-constrained. The proposed method 
can give the optimal solution for both the redundant and 
over-constrained cases in the least squared sense. 

In the second approach, the control law is developed based 
on the Hierarchical Impedance Control (HIC) scheme pro- 
posed by Jazidie et al. [22]. The HIC scheme is a framework 
that has been developed in order to utilize the redundancy in 
the forcekorque relationship in terms of impedance control. 
It can control not only end-effector impedance using one 
of the conventional impedance control methods, but also 
regulate additional arm impedance. The HIC scheme has been 
introduced by incorporating an additional controller to the end- 
effector impedance controller in such a way that the additional 
controller has no effect on the dynamic behavior of the end- 
effector motion. As a result, under the second approach, the 
desired end-effector impedance can always be realized, since 
controlling the end-effector impedance is considered as the 
most important task and regulating the other several point 
impedances as a sub-task. 

The MPIC presented here is useful for certain environ- 
ments where some objects exist on the task space of the 
manipulator. For example, when the manipulator close to 
the objects performs a task that requires the end-effector 
compliant motion, it is worth controlling the impedances of 
several points on the links of the manipulator in order to 
avoid a collision with them as well as regulating the end- 
effector impedance for the task. In this case, first the closest 
point on the manipulator to the object is defined as a virtual 
end-point. Then, the impedance of the virtual end-point is 
regulated to be stiff in the direction of the object in order 
to avoid a collision caused by unexpected external forces to 
the manipulator in addition to controlling the impedance of the 
end-effector. On the other hand, if the virtual end-points are 
required to interact with the objects, then the impedances of 
the virtual end-points are regulated in order to accommodate 
to an interaction force so as to comply with environmental 
constraints imposed by the objects Also, the proposed method 
can be easily applied to a macro-/mini-manipulator system. By 
incorporating a lightweight mini-manipulator into a standard 
manipulator (the macro-manipulator), the capability of the ma- 
nipulator system to perform fine motions can be significantly 
improved [23], [24]. Using the MPIC, we can control the 
end-effector impedance of the macro-manipulator and/or the 
coupling impedance between the end-effectors of the mini- 
and the macro-manipulators while controlling the end-effector 
impedance of the mini-manipulator. 

The paper is organized as follows: Section I1 is devoted to 
give an illustration of a manipulator performing a task close 
to obstacles, and the definition and kinematic structure of the 

task 

'. .. system 
? coordinate 

. ,.7 

(a? ib) 

Fig. 1. Manipulator close to obstacles: (a) actual arm and the obstacles, and 
(b) virtual arms. 

virtual arm corresponding to the virtual end-point are given. 
Then, based on the concept of the virtual arm, two approaches 
of the multi-point impedance control law are presented in 
Sections 111 and IV, respectively. Finally, the effectiveness 
of the proposed method is shown by simulation experiments 
in Section V. 

11. VIRTUAL ARM AND ITS KINEMATICS 

A. Virtual Arm 

We consider a redundant manipulator having m joints shown 
in Fig. l(a). Since the manipulator performing a task that 
requires compliant motion of the end-point is close to some 
obstacles, the manipulator may collide with them due to 
unexpected disturbance force. Then, as shown in Fig. l(b), 
a virtual arm is defined as an arm that has its end-effector 
(hereafter, referred as a virtual end-point) located on a joint 
or a link of the actual arm [20], [25]. Using the virtual arms, 
the interaction between the manipulator and its environment 
can be considered within the framework of the impedance 
control. For example, to avoid a collision with the obstacle 
due to disturbance forces, the impedances of the virtual end- 
points should be as large (stiff> as possible in the direction of 
the obstacles. Also, to comply with environmental constraints 
imposed by the objects, the impedances of the virtual end- 
points should be regulated small (compliant). Here, nv virtual 
arms are generally considered corresponding to the number of 
the virtual end-points. 

B. Kinematics of the Virtual Arm 
Let the virtual end-point position and velocity vectors of the 

i-th virtual arm in the i-th virtual end-point coordinate system 
be denoted as X u ,  E R' and X u ,  E R', respectively. Let 
also the corresponding force vector and joint torque vector be 
denoted as F,,, E R' and r E Rm, respectively. For redundant 
manipulators, rn is larger than 1. The instantaneous forward 
kinematics of the i-th virtual arm is given by 
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where Jvi E % l x m  is the Jacobian matrix associated with the 
i-th virtual arm. Concatenating (1) and (2) for all virtual arms, 
we can obtain the instantaneous kinematics as given by 

X ,  = J,b 
T 

T = J, F, 
(3) 

(4) 

where X ,  = [XTlXT2 ...XTnn,IT E %"wl and F, = 
[FZFS . . . F2,IT E R".' are the concatenated end-point 
velocity vector and the concatenated force vector of all virtual 
end-points, respectively. J ,  = [ J Z J S  . . .  JTn,IT E RZn*lXm 

is the concatenated Jacobian matrix of the virtual arms. In 
the following sections, two approaches of the multi-point 
impedance control are developed using the concept of the 
virtual arms. 

111. MULTI-POINT IMPEDANCE CONTROL: FIRST APPROACH 

A. Relationships Between Joint Impedance 
and Multi-Point Impedance 

When the manipulator interacts with the environment not 
only through the actual end-effector but also through the virtual 
end-points, the motion equation of the manipulator can be 
written in the following form: 

(5)  

where F$ E Rnv1 is the concatenated external force vector 
exerted on the virtual end-points; FFt E R' is the external 
force exerted on the end-effector; 0 E Rm is the joint angle 
vector: M ( 0 )  E X m x m  is the nonsingular inertia matrix 
(hereafter denoted by M ) ;  h(0, b )  E Rm is the nonlinear term 
representing the joint torque vector due to the centrifugal, 
Coriolis, gravity and friction forces; T E Rm is the joint 
control torque vector; and J ,  E RLxm is the end-effector 
Jacobian matrix. 

The target impedances of the end-effector and the virtual 
end-points are, respectively, expressed by 

(6) 
(7) 

M ( @  + h(0, 8) = 'T + J , T F , ~ x ~  + 

MedXe + B,dX, + K,dX, = FFt 
MvdXv + B,dX, + K,dX, = FFt 

where Me,  Be, K ,  E 82'" are the desired inertia, viscosity 
and stiffness matrices of the end-effector, respectively; and 
dX,  = X ,  - X," E R' is the deviation vector of the end- 
effector position from the desired trajectory X,d. On the other 
hand, M,, B,, K ,  E Rn*'xnv' are the concatenated desired 
inertia, viscosity and stiffness matrices of the virtual end- 
points, respectively; and dX,  = X ,  - X," E Rnvl is the 
concatenated deviation vector of the virtual end-points from 
its desired trajectory X," E Rnw'. 

Let us define J ,  = [JTJ:lT E R("vfl)'Xm as the con- 
catenated Jacobian matrix for all virtual arms and the actual 
arm. Using the concatenated Jacobian matrix, J,, the motion 
equation of the manipulator ( 5 )  can be rewritten in the form 

M(e)i + h(%, 4) = + J , T F : ~ ~  (8) 

where F F t  = [(F:Xt)T ( F r t ) T ] *  E R("*+')' is the concate- 
nated external force vector exerted on the virtual end-points 
and the end-effector. 

Now, (6) and (7) are concatenated to express a new target 

(9) 

where M,, B,, K ,  E %("u+l)'x("u+l)' are the concatenated 
desired inertia, viscosity and stiffness matrices of the end- 
effector and the virtual end-points, respectively, and dX,  = 
[ (dX, )T(dXe)T]T E is the concatenated deviation 
vector of all end-points from the concatenated desired trajec- 

impedance as given by 

McdXc + B,dX, + K,dX, = FFt 

tory, x: = [(X,")'(X,d)']' E R(".+l)'. 
Then the control law is given by 

7 = rim, + Tcomp (10) 

where T~~~ 6 gm is the joint torque vector needed to produce 
the desired multi-point impedance; and T~~~~ E Rm is the 
joint torque vector for the nonlinear compensation. 

The term r,,, E Rm is defined as 

rImp = -M,dd - B,db - K,dd + M0 - JTM,J,O (11) 

where M,, B,, K ,  E RmXm are the inertia, viscosity, 
and stiffness matrices of the joint, respectively; and d0 = 
0 - Bd E Rm is the deviation vector of the joint position from 
the desired trajectory O d .  On the other hand, the nonlinear 
compensation in the joint space is used for simplicity, and 
given by 

7comp = L ( o , e )  (12) 

where h(0 ,b)  may be computed using the motion equation 
of the manipulator with estimated link parameters [26]. It 
is assumed that L ( 0 , e )  = h(0,8) and the manipulator's 
configuration is not in a singular posture. 

Applying the control law given in (10)-(12) to the motion 
equation of the manipulator (8), we can find 

M,dO$ B,db f K,d% = J,TF,eXt - J,TM,J,b. (13) 

Now, substituting (9) into (13) and using the kinematic 
relationships of all end-points including the end-effector, we 
finally have the following equations: 

(14) M, = JT M,  J ,  
B, = JTB,  J ,  (15) 

KJ = JTK,J,. (16) 

and 

The above equations give the relationships between the joint 
impedance matrices and the multi-point impedance matrices. 
The joint impedance matrices, M,, B,, K,, which satisfy 
(14)-( 16), may regulate the impedances of the end-effector and 
the virtual end-points to some extents. For a certain condition, 
the desired multi-point impedance can be realized exactly. In 
general, however, the manipulator loses the redundant joint 
degrees of freedom as the number of points that we want to 
regulate their impedances are increased, and finally it becomes 
over-constrained. In the following subsection, an algorithm 
for obtaining the optimal joint impedance parameters that can 
regulate the multiple point impedances as close as possible to 
the desired ones is developed. 
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virtual end-point 

Fig. 2. Three cases of the virtual arms: (a) a redundant case, (b) an 
over-constrained case, and (c) a singular case. 

B. Optimal Joint Impedance 

Depending on the location and the number of the virtual 
end-points, kinematic conditions of the manipulator may occur 
to be under-constrained, over-constrained, or singular [20], 
[25j. Fig. 2 illustrates three conditions of a six-joint planar 
manipulator (m = 6) where one or more virtual end-points 
are located on the links of the manipulator, and only two 
degrees of freedom of translational motion on the task space 
are considered for simplicity ( I  = 2). The kinematic conditions 
can be categorized depending on the number and the location 
of the virtual end-points as follows: 1) a redundant case 
[Fig. 2(a)], 2) an over-constrained case [Fig. 2(b)j, and 3) a 
singular case [Fig. 2(c)]. 

The rank of J ,  reflects three cases mentioned above [20], 
[25]: J ,  is of full row rank for the redundant case, of full 
column%nk for the over-constrained case, and not of full rank 
for the singular case. It should be noted that a case in which 
J ,  becomes a square matrix with full rank is considered as a 
special instance of the redundant cases, and it may be called 
a nonsingular case. Consequently, the rank of J ,  determines 
the property of the matrix equations (14)-(16). 

Let us assume that the desired multiple point impedances 
are given according to the task. For the redundant cases, the 
desired multiple point impedances can be always realized and 
(14)-(16) directly give the minimum norm solutions of the 
joint impedance matrices corresponding to the given desired 
multi-point impedance matrices, Me, B,, K,. On the other 
hand, for the over-constrained and singular cases, there are no 
joint impedance matrices that realize the given desired multiple 
point impedances in general. 

In the following, the general approach to obtain the optimal 
joint impedance matrices for all of three cases is explained 
using the maximum rank decomposition of the concatenated 
Jacobian matrix J ,  

where J,, E R(nw+')zxp and J,b E Rpx" have the ;me rank 
as J,: rank J ,  = rank J,, = rank J,O = p .  The matrices 
J,, and Jcb in (17) express an over-constrained part and an 
under-constrained part of the concatenated Jacobian matrix J,, 
respectively. 

First, the optimal way to obtain the joint inertia matrix M j  
is derived. By substituting (17) into (14), we have 

' Mj J,TbJ,T,McJcaJcb. (18) 

Then, (18) is divided into the following two equations: 

Mjb = Jz Me Jc, 

Mj = J $ M j b J c b .  (209 
(19) 

The matrix J:M,J,, in (19) is always invertible whenever 
the desired concatenated inertia matrix M ,  is given as a 
nonsingular one. Therefore, (19) can be transformed into 

M;' = J,,M~;' J;. (21) 

In general, since the matrix J,, is of full column rank, the 
solution Mji' that satisfies (21) does not exist. In this case, 
the goal is to find a matrix M3;I to minimize 

G ( M j < ' )  = [lW(ML1 - JcaMJilJz)WT(I (22) 

where IlAll stands for a matrix norm defined by 

IlAll = {tr(ATA))O (23) 

where tr(ATA) denotes a trace of the matrix ATA. The matrix 
W E R(nv+l)zx(nw+l)' in (22) is a nonsingular diagonal 
matrix that can weight the desired multiple point impedances 
according to the given task. 

The necessary condition that the optimal solution must 
satisfy is 

aGl(MJj1)/8MJ;' = 0. (24) 

M$ = J,#WMLlWT ( J , # y  (25) 

Substituting (22) into (24) and expanding it, we can obtain 

J ,  = WJ,, (26) 

using the partial differential formulas about the trace of a 
matrix [27], where J,# is defined as J,# z (JzJw)- lJ : .  
Since the matrix J,'Jw E R p x p  is always invertible and rank 
J,, = p ,  we can obtain from (25) 

Consequently, we can get the optimal joint inertia matrix M j  
using (20) and (27). 

The method developed above can be applied to all the cases 
shown in Fig. 2. In particular, the computation is dramatically 
simplified in the redundant and over-constrained cases. In the 
redundant case, since J,, = I(n,+l)l (an (n, + 1)Z x (n, + 1)Z 
unit matrix) and Jcb = J,, we can see that MJb = M,, and 
the joint inertia matrix is reduced to (14). Also, in the over- 
constrained cases, since J,, = J ,  and Jcb = I,, we can see 
that M j  = MI*, and the joint inertia matrix is reduced to 
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Using the same way as the above, we can also find the optimal 
solutions for the joint viscosity and stiffness matrices as given 

B,b = (JzJw)  ( J ~ w B ~ ' w T ~ , , , ) - ' ( J . J w )  (30) 

by 

B3 = JcTbB,b Jcb (31) 

and 

K,b = (J:Jw) ( J zWKi 'WTJw) - l  ( J . J w )  (32) 

K, = J,T,K,b Jcb (33) 

where J,  is given by (26). 

be expressed by 
It can be easily seen that the joint torque rim, in (1 1) can 

qmp = -J:(i?,dX, + B,dX, + K,dX,) 
+ M e  + Jc"(n;r, - M,)jci  (34) 

where U,, Be, and K, are, respectively, given by 

i?, = (J:)+M,J: (35)  
B, = (J,T)+B,J,+ (36) 
K, = (JF)'K,J:. (37) 

The optimal joint impedance matrices, M,, B,, and K,, 
obtained here give the realized concatenated multi-point 
impedance matrices, G,, Be, and K,, which are closest to the 
desired concatenated multi-point impedance matrices, Mc, B,, 
and K,, in terms of the cost function (22). It should be noted 
that for the redundant case, the joint torque r,,, can be 
computed directly from the desired concatenated multi-point 
impedance matrices M,, Be, and K,  as given by 

r,,, = -JT(McdXc + B,dX, + K,dX,) + M e  (38) 

since the matrices M,, Be, and K,  can be always realized 
exactly. 

In summary, the first approach provides a compact for- 
mulation for controlling the multiple point impedances of 
redundant manipulators. It can be seen that in the redundant 
case, this approach can realize the given desired multiple 
point impedances exactly and the computation is relatively 
simple. However, in the over-constrained and singular cases, a 
problem will arise for the tasks where the compliant motion of 
the end-effector is critically significant, since exact realization 
of the end-effector impedance is not guaranteed. Next, on the 
basis of the HIC scheme [22], the development of the second 
approach is presented in the following section. 

IV. MULTI-POINT IMPEDANCE CONTROL: SECOND APPROACH 

A. Hierarchical Impedance Control (HIC) 
Sufficient Condition of the HIC Scheme: The basic idea and 

the sufficient condition of the HIC scheme [22] is briefly 
described in this section. First, let us consider an m-joint 
redundant manipulator that interacts with the environment 
only through its end-effector. The motion equation of the 
manipulator is expressed by 

(39) M(0)B + h(B,e) = 7 + J T F F t .  

The target impedance of the end-effector is given in (6). In 
the hierarchical impedance control scheme, the control law is 
given by 

r = r  effector + Tcomp + radd (40) 

where Teffector E Rm is the joint torque vector required to 
produce the desired end-effector impedance; and Tadd E 82, 
is the joint torque vector for a sub-task. For the term Teffector E 
X2", the impedance control law without calculation of inverse 
Jacobian matrix [12] is adopted 

TeRector = JT [ R { X d  - MF1(BedXe + KedXe)  - jee}  
- {Ii - AML'}F,e"t] (41) 

where 11 is an 1 x I unit matrix; and A = (J,M-'J:)-' E 
82"' is defined as the operational space kinetic energy matrix 
[28]. Also, the nonlinear compensation in the joint space is 
used for simplicity and given as in (12). 

If the additional joint control torque, Tadd, satisfies the 
following condition: 

. JTTadd  = 0 (42) 

where je  = M-l  J T R  E W x i ,  then 7,dd dynamically has no 
effect to the end-effector motion of the manipulator, and the 
end-effector impedance remains equal to the target impedance 
given in (6) (see Appendix A). 

Optimal Additional Controller: Kang and Freeman [9] de- 
rived the general solution of (42) using three kinds of local 
joint torque optimization schemes: joint torque minimization, 
natural joint motion and joint acceleration minimization. Note 
that the null space derived by natural joint motion and joint 
torque minimization criteria are the same as the ones proposed 
by Khatib [8] and Jazidie et al. [22], respectively. 

In the present paper, using the natural joint motion criterion, 
we will derive the additional optimal controller, Tadd, corre- 
sponding to the desired joint torque, rhd. First, the null space 
derived by the natural joint motion criterion is given by 

(43) 

where I ,  is an m x m unit matrix, and z E 82" is an arbitrary 
vector. The joint torque, Tadd, in (43) always satisfies the 
sufficient condition (42), and now the problem becomes how 
to find the arbitrary vector x in (43) to minimize the following 
cost function: GZ ( ~ ~ d d )  

radd = (1, - J,' 7:) 2 

GZ(7add) = (7;dd - Tadd)TM-'(7,Tdd - Tadd). (44) 

The cost function (44) describes the inertia inverse weighted 
driving force or the acceleration energy about the discrepancy 
between Tadd and 7idd [8]. Using the least square method, we 
can find the optimal solution (see Appendix B) as given by 

TaT,dd = (1, - JTjT)r&d. (45) 

The joint torque of (45) is the optimal one corresponding 
to the cost function (44) and has no effect on the dynamic 
behavior of the end-effector motion, since Tadd always lies in 
the null space of j:. As a result, under the HIC, it is possible 
to utilize arm redundancy through a suitable selection of the 
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Coordinate Transformation I 

I 

Fig. 3 .  Block diagram of the second approach of the MPIC. The method can 
control the virtual end-point impedances as well as the end-effector impedance 
of the redundant manipulator. 

additional controller, Tadd, in the sense that the manipulator 
can perform a sub-task while controlling the end-effector 
impedance. 

B. Derivation of the Control Law 

Now, we will derive the multi-point impedance control law 
based on the HIC scheme. Instead of (40), the joint control 
torque is given by 

including the cancellation torque, ( JeJJTJ:FveXt, for the 
effects of the external forces exerted on the virtual end-points 
to the actual end-effector motion. 

The concatenated target impedance for the virtual end-points 
is given in (7). In order to determine the desired joint torque, 
r&, for controlling the virtual end-point impedances, the 
effects of 71dd to the actual end-effector impedance is ignored 
as the first step, i.e., the null space transformation matrix is 
assumed to be an identity matrix in (45), and 7,dd in (46) is 
reduced to rzdd. Then, based on the forceltorque relationship 
(4) of the virtual arms, we can find the following joint torque 
for controlling the virtual end-point impedances: 

Under the HIC framework, the coupling effects of T& to 
the actual end-effector impedance can be filtered out through 
the null space transformation matrix using equation (45), 
and the additional joint control torque 7,dd is assured to be 
always the optimal one corresponding to the cost function (44): 
Therefore, substituting (47) into (45) we have 

7add = - (1, - J,'IF) JT ( d x ,  + B, + Ku dx,) 
+ (Im - .JTj,')nird (48) 

using the following property: 

where U E Rz is an arbitrary vector. The block diagram of the 
hierarchical multi-point impedance control developed in this 
section is shown in Fig. 3. 

C. Validity of the Control Law 

It has been shown that there are three kinematic conditions 
depending on the number and the location of the virtual end- 
points, which are reflected by the rank of the concatenated 
Jacobian matrix J c  (see Sect 111-B). These cases are examined 
in terms of the MPIC derived in the previous subsection. 

Applying the MPIC [(12), (41), (46), and (48)] to the motion 
equation of the manipulator (5 ) ,  we can have the following 
equation: 

( I ,  - J,'J,')J,T(MudXu + BvdXw + KudXu - I??') = 0. 

(50) 

It can be seen that the realization of the virtual end- 
point impedances depends on the rank of the matrix ( I ,  - 
JF 1:) J T .  When the matrix ( I ,  - JT J:) JT is of full column 
rank, the concatenated target impedance of the virtual end- 
points (7) can be realized exactly. Otherwise, the impedances 
of the virtual end-points may differ from the desired ones. 

Here, we can introduce the following theorem on the 
relationship between the rank of ( I ,  - J T j F ) J T  and the 
rank of the concatenated Jacobian matrix J ,  [29] and [30]: 

Theorem 1: When the end-effector Jacobian matrix J ,  is 
of full row rank matrix, then the matrix ( I ,  - JTJF)JT  is 
of full column rank if and only if the concatenated Jacobian 
matrix J ,  is of full row rank. 

This means that the realization of the virtual end-point 
impedances is reduced to the rank of the concatenated Jacobian 
matrix J,, which is consistent with the kinematic conditions 
of the virtual arms discussed in Sect. Ill-B. 

Summing up, the second approach considers controlling 
the end-effector impedance as the most important task, and 
the additional joint torque for the regulation of the virtual 
end-point impedances is designed in such a way that it has 
no effect on the end-effector motion. Therefore, under the 
second approach, the desired end-effector impedance can be 
always realized. It should be noted that in the redundant 
cases [Fig. 2(a)], the desired multiple point impedances can 
be realized simultaneously under the second approach. On the 
other hand, jn the over-constrained and singular cases, the end- 
effector impedance can be controlled exactly while the virtual 
end-point motions are expected to be strongly reflected by 
their target impedances. 

V. SIMULATION EXPERIMENTS 
The effectiveness of the proposed method is verified by 

computer simulations using planar manipulators where the 
dimension of the task space includes two translations and one 
rotation ( I  = 3 ) .  The first set of simulation experiments is 
intended to evaluate the dynamic response of the six-joint 
manipulator (rn x 6) under the proposed method where the 
disturbance forces, FFt = [-2 (N),  -2 (N), 2 (Nrn)lT, 
and FZXt = [-2 (N), 2 (N),  2 (Nm)lT, are exerted to 
the end-effector and the virtual end-point, respectively. The 
simulations are performed for a nonsingular case, where the 
virtual end-point was located on the middle point of the 
third link nv = 1 (see Fig. 4). The link parameters of the 
manipulator are shown in Table I. 
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TABLE I 
LINK PARAMETERS OF THE SIX-JOINT PLANAR MANIPULATOR 

Iink z (8 = 1,. . .  , 6 )  
length (m) 0.4 
mass (kg) 3.0 

0.32 
center of mass (m) 0.2 

moment of inertia kgm (') 

0 = [ 1.0, -0.8, 1.4, -0.6, -1.2, -1.0 IT (rad) 

Fig. 4. Model of a six-joint planar manipulator 

Fig. 5 shows the simulation results under the conventional 
impedance coqtrol [ l l ] ,  ahere Fig. 5(a) and (b) indicates the 
change of manipulator posture and the time history of the end- 
effector position, respectively. On the other hand, Figs. 6 and 
7 show the motion profile of the manipulator under the first 
and the second approaches of the MPIC, respectively. Equation 
(38) was used in the simulation using the first approach. 

The desired end-effector impedance matrices were set as 
Me = diag. [0.4 (kg), 025 (kg), 0.4 (kgm2)], Be = diag. 
[2 (N/(m/s)), 2.5 (N/(m/s)l), 4 (Nm/(rad/s))], K,  = diag. [lo 
(N/m), 100 (N/m), 10 (lVm/rad)]. Also, in Figs. 6 and 7, 
the desired virtual end-point impedance matrices were set 
as M, = diag. [0.4 (kg), 0.25 (kg), 0.4 (kgm2)], B,,= 
diag. [2 (N/(m/s)), 2.5 (N/'(m/s)), 4 (Nm/(rad/s))], K,  = diag. 
[IO (N/m), 100 (N/m), 10 (Nmkad)]. Under these impedance 
matrices, the damping ratiios of the desired dynamic behavior 
in the directions of z,y axes and the rotation become equal 
to 0.5, 0.25, and 1.0, respectively, for both the end-effector 
and the virtual end-point. (On the other hand, the settling times 
for all directions of the end-effector and the virtual end-point 
become equal to 0.8 s. Also, the desired end-effector's and 
virtual end-point's trajectories are set as X,d(t) = Xe(0 ) ,  and 
X,d(t) = X,(O), respectively. The computations of the manip- 
ulator dynamics were performed by the Appel's method [31]. 
It should be noted that in the simulations using conventional 
impedance control, a dissipative joint torque was added to the 
controller in order to avoid the undamped internal joint motion 
of the redundant manipulator as follows: 

(51) 

where d is a positive scalar constant and it was set equal to 10 
(Nm/(rad/s)). The above dissipative joint torque has no effect 
to the end-effector motion. Also, the cancellation torque for 

T T  ' 
Tdissp = -d(rm - Je Je ) e  

........... 
(m) - dqe (rad) 

clye (m) 
0.3 

c 
C 

3 :::+-I 0 .  ,,..CI-.-.-.-.-'-'-.-.-.-.-.-.-"- 

.......................................... ...... 
5 -0.1 ,. 
-0 -0.2 ................... .3 

I 
-0.3; 0.5 1.0 1.5 2.0 

time (s) 
(b) 

0.6 
9 0.4 
G 8 0.2 
$ 0  
3 5 -0.2 
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der the conventional impedance control: (a) stick pictures, (b) end-effector 
displacements, and (c) displacements of the middle point of the third link. 

the effects of the external force exerted on the virtual end- 
point was included in the conventional impedance controller 
in order to realize the desired end-effector impedance. 

The response of the end-effectors in Figs. 5-7 are exactly 
the same, where the realized end-effector motion is completely 
reflected by the desired impedance. In terms of the virtual 
end-point, however, the difference between the conventional 
impedance control and the proposed methods appears clearly. 
In Figs. 6 and 7, since the virtual end-point was located on 
the middle point of the third link, there are enough degrees 
of the freedom to realize the desired impedances of both the 
end-effector and the virtual end-point simultaneously. In this 
case, the concatenated Jacobian J ,  is of square and full rank, 
and the rank of ( I ,  - J,'JT)JT E iJ16x3 is equal to 3. It can 
be seen from Figs. 6(c) and 7(c) that the dynamic responses 

c 
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5 I 

0 virtual end-point 
initial posture 

............ final posture 

................................... ........................................ 

time (s) time (s) 
(b) (b) 

0.6 

........................................ 

time (s) 
(c) 

Fig. 6. Motion profile of the six-joint manipulator for external force under 
the first approach of the MPIC, where the virtual end-point is located on the 
middle of the third link: (a) stick pictures, (b) end-effector displacements, and 
(c) virtual end-point displacements. 

0.6 
y 0.4 
d 4 0.2 

3 -0.2 ......................... 

a - 3 0  

-0.4 
0 0.5 1.0 1.5 2.0 

time (s) 
(c) 

Fig. 7. Motion profile of the six-joint manipulator for external force under 
the second approach of the MPIC, where the virtual end-point is located on 
the middle of the third link: (a) stick pictures, (b) end-effector displacements, 
and (c) virtual end-point displacements. 

of the virtual end-point are completely specified as their target 
impedances. 

case, where the virtual end-point is located on the middle point 
of the fourth link of the manipulator. The desired impedances 
of the end-effector and the virtual end-point are the same 
as in the first set of the simulations. The simulation results 
under the first and the second approaches of the MPIC are 
shown in Figs. 8 and 9, respectively. As we can see from 
the figures, the desired multiple point impedances cannot be 
realized simultaneously for the singular case. Under the second 
approach, however, the realized end-effector impedance i s  
exactly the same as the desired one and the virtual end-point 
motion is strongly reflected by its target impedance. Note that 
in order to avoid the internal joint motion between the virtual 

The second set of simulations is dedicated for the singular 

end-point and the base, the dissipative joint torque was added 
to the first and the second control laws as given by 

rdissp 

= -qm - J F J T )  

x [I ,  - {]:(Im - J:J:)}+{.t,'(Jm - JTJT)}]B 
(52) 

where J,, = M-lJT(J,M-lJT)- l  E Rmxnv' and d = 10 
(Nm/(rad/s)). The dissipative joint torque is selected to act in 
the null space of JT and ?:, so that the following properties 
are guaranteed: 

J:7dlssp = 0 (53) 
(54) T 

J ,  rdissp 0. 
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virtual end-point 
initial posture I ............ final posture 

(a) 

0.3 

* 
$2 i ::;//--I 
8 0 B. _,_,***. -.-.- ..1-1-. -.- . - a - . - .  - 
s - 0 . 1  .... cd 

....................................................................... 
3 -0.2 

-0.30-- 0.5 1.0 1.5 2.0 
time (s) 

(b) 

............... 

- . - - - I .  dy, (m) 
0.6 

y 0.4 

0.2 
2 0  
8 4 -0.2 

+=I I . ' C I - , - . - . - . - ' - l - ' - ' - l - l - l - l  

..................................... .... ...................... 

-0.4 oL' 0.5 1.0 1.5 2.0 
time (s) 

(c? 

Fig. 8. Motion profile of the six-joint manipulator for external force under 
the first approach of the MPIC, where the virtual end-point is located on the 
middle of the fourth link (a) stiick pictures, (b) end-effector displacements, 
and (c) virtual end-point displacements. 

This means that the dissipative joint torque (52) has no effect 
to the motion of both the end-effector and the virtual end-point. 

Next, the second approaich of the MPIC is applied to a three- 
joint planar manipulator following a circular trajectory shown 
in Fig. 10, and the link parameters of the manipulators are 
the same as in Table I. The orientation of the end-effector 
is arbitrary, so that the task dimension reduces to 2. Two 
kinds of coordinate systems are chosen as follows: 1)  the 
world coordinate system, X(x, y); and 2) the polar coordinate 
system, (a(q5, r ) ,  with its origin at the center of the circle where 
q!J is the rotational angle and r is the radius of the circular 
trajectory. 

The target end-effector impedance is expressed in the polar 
coordinate system, where the target inertia, viscosity and 
stiffens matrices are given as Me = diag. [13.5 x (kgm2), 

0.3 
Y r: 

3 : : i F i  0 . -,e. -._.-.-.-.-.-.-.-.-._._._I_._._ 

....................................... ...... 
-$ -0.1 .. 
3 -0.2 .................... 

I 
0.5 1.0 1.5 2.0 

time (s) 

-0.3; 

(b) 

Y 0.4 
E E 0.2 

2 2 0  
2 -0.2 

Q) 
0 

................................................................ 
-0.4 1 

0 0.5 1.0 1.5 2.0 
time (s) 

(c? 

Fig. 9. Motion profile of the six-joint manipulator for external force under 
the second approach of the MPIC, where the virtual end-point is located on 
the middle of the fourth link: (a) stick pictures, (b) end-effector displacements, 
and (c) virtual end-point displacements. 

0.2 (kg)], Be = diag. [1.25 (Nm/(rad/s)), 20 (N/(m/s)>], and 
K,  = diag. [31.25 (Nm/rad), 500 (N/m)], respectively. Also 
the desired end-effector trajectory (equilibrium trajectory) is 
defined as the following: 

where the radius r and the time duration t f  are set to 0.25 m 
and 2.0 s, respectively. The desired velocity and acceleration of 
the end-effector are also obtained from (55 )  by differentiation. 

Figs. 11 and 12 show simulation results performed under 
the conventional impedance control and the second approach 
of the MPIC, respectively. The virtual end-point was located 
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0 virtual end-point 
~ l l  initial and final postures 

@ virtual end-point 
8= [ -0.175,0.35, -0.1751T (rad:) 

Fig. 12. Stick pictures of the three-joint planar manipulator following a 
circular trajectory under the second approach of the MPIC. The virtual' 
end-point is located on the third joint of the manipulator. 

Fig. 10. Three-joint planar manipulator following a circular trajectory. 

@ virtual end-point - initial posture 

Fig. 11. 
circular trajectory under the conventional impedance control. 

Stick pictures of the three-joint planar manipulator following a 

Since the method requires force and acceleration measure- 
ments in the second approach, it may be limited to use in 
the cases where these measurements are available. It also has 
been assumed that the desired impedance parameters are given 
beforehand. Future research will be directed to develop a more 
practical computation technique of the MPIC and to establish 
the impedance planning. 

APPENDIX A 
SUFF'ICIENT CONDITION OF THE HIC 

Applying the control law given in (41) and (12) to the 
motion equation of the manipulator (40), we can find the 
following equation: 

M(e)d = Teefector + Tadd + J p F t .  (A.1)  

(kg), B, = diag. [0, 201(N/(m/s)), K,  = diag. [0, 5601 (N/m) 
in respect to the world coordinate system, and the desired 
virtual end-point trajectory is given as X,d(t) = X,(O). Under 
these impedance matrices and the desired trajectory, the virtual 
end-point moves almost freely in the direction of x axis and 
constrained tightly in the direction of the y axis. As expected, 
in Fig. 12 the virtual end-point moves along the x axis during 
the end-effector follows the circular trajectory. 

VI. CONCLUSION 
Two approaches of the MPIC for the redundant manipulators 

have been proposed. The methods can regulate the impedances 
of several points on the links of the manipulator as well as 
the end-effector impedance. For the redundant cases, both ap- 
proaches give the same result in which the desired impedances 
of the end effector and the virtual end-points can be realized 
exactly. The first approach provides a colmpact formulation 
and requires a simple computation for the iredundant case. On 
the other hand, the second approach is able to regulate the 
impedances of virtual end-points without any effect to the 
end-effector motion of the manipulator, so that the desired 
impedance of the end-effector can be always realized. 

Teffector = JT [ A { X t  - Ml' (B,dX,  + K,dX,) - j , )}  
- {Il - AMe-'}Fyt] - J F F a d d  (A.2) 

Fadd = hJeMpl 'Tadd (A.3) 

where Fadd E @ is the additional force on the end-effector 
produced by the additional joint torque, Tadd. 

Since the additional joint torque, Tad& should not produce 
any effect to the end-effector motion and the end-effector 
impedance should remain equal to the target impedance given 
in (6) ,  the additional force, Fadd,  in (A.2) must be equal to 
zero. This yields 

JT'Tadd 2 0 (A.4) 

APPENDIX B 
OPTIMAL ADDITIONAL CONTROLLER OF THE HIC 

Substituting (44) into (45), we find 
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Now, the problem is how to obtain the vector z in such 
a way that the objective fimction, G ~ ( z ) ,  is minimized. It is 
well known that the necessary condition regarding the optimal 
solution of the above probdem is given by 

Substituting (B.l) into (B.2) and expanding it using the 
following properties: 

finally we have 

( I ,  - J ,  T J ,  -T = ( I ,  - J T J T ) T ~ ~ ~ .  (B.5) 

Then substituting (B.5) into (44), we can obtain 
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