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Abstract— This paper outlines a probabilistic neural network
developed on the basis of time-series discriminant component
analysis (TSDCA) that can be used to classify high-dimensional
time-series patterns. TSDCA involves the compression of high-
dimensional time series into a lower-dimensional space using
a set of orthogonal transformations and the calculation of
posterior probabilities based on a continuous-density hidden
Markov model that incorporates a Gaussian mixture model
expressed in the reduced-dimensional space. The analysis can
be incorporated into a neural network so that parameters can
be obtained appropriately as network coefficients according to
backpropagation-through-time-based training algorithm. The
network is considered to enable high-accuracy classification
of high-dimensional time-series patterns and to reduce the
computation time taken for network training. In the experi-
ments conducted during the study, the validity of the proposed
network was demonstrated for EEG signals.

I. INTRODUCTION

Bioelectric signals such as electromyograms (EMGs) and

electroencephalograms (EEGs) strongly reflect human inter-

nal states and intentions, and many studies have investigated

interfaces controlled with these signals [1], [2], [3]. To

support the development of high-performance interfaces, ac-

curate pattern classification of bioelectric signals is required.

In previous work, neural networks (NNs) have been ap-

plied to bioelectric signal pattern classification. In particular,

Tsuji et al. proposed NNs based on a Gaussian mixture

model (GMM) and a hidden Markov model (HMM), and

demonstrated their effectiveness for such classification [4],

[5].

However, the dimensionality of input with NNs increases

if high-dimensional features (e.g., signals measured with

numerous electrodes and frequency spectra) are used. Such

increased dimensionality results in network structural com-

plexity, parameter learning difficulty and longer computation

time.

This paper outlines a novel time-series pattern classifica-

tion model called time-series discriminant component anal-

ysis (TSDCA) that can be used to reduce and classify input

data in consideration of the time context. A probabilistic neu-

ral network has also been developed based on TSDCA, which

allows a reduction in the amount of input data required based

on the use of several orthogonal transformation matrices and

enables calculation of posterior probabilities for classification

H. Hayashi, T. Shibanoki, Y. Kurita, and T. Tsuji are with Graduate
School of Engineering, Hiroshima University, Higashi-hiroshima, 739-8527
Japan hayashi@bsys.hiroshima-u.ac.jp

K. Shima is with Graduate School of Engineering, Yokohama National
University, Yokohama, 240-8501 Japan

under the assumption that the reduced feature vectors obey

an HMM with a GMM for probabilistic density. In this way,

the parameters of dimensional reduction and classification

can be obtained together, thereby supporting the accurate

classification of time-series data with high dimensionality.

II. TIME-SERIES DISCRIMINANT COMPONENT ANALYSIS

(TSDCA)

A. Model structure

TSDCA consists of several orthogonal transformation

matrices and an HMM that incorporates a GMM for the

probabilistic density function. The model allows a reduction

in the dimensionality of input data and enables calculation

of posterior probabilities for each class.

In regard to classifying a d-dimensional time-series vector

x(t) ∈ ℜd into one of the given C classes, the posterior prob-

ability P (c|x(t)) (c = 1, · · · , C) is examined. First, x(t)

is projected into d′-dimensional vector x′
(c,k,m)

(t) ∈ ℜd′

using several orthogonal transformation matrices V
(c,k,m).

This can be described as follows:

x′
(c,k,m)

(t) = V
(c,k,m)T(x(t)− µ(c,k,m)), (1)

where µ(c,k,m) ∈ ℜd is the mean vector of the component

{c, k,m} (k = 1, · · · ,Kc; Kc is the number of states,

m = 1, · · · ,Mc,k; Mc,k is the number of components), and

V
(c,k,m) ∈ ℜd×d′ is the orthogonal transformation matrix

that projects from d into d′.

In the compressed feature space, the projected data obey

a probabilistic density function as follows:

g(x(t); c,k,m)=(2π)−
d′

2 |Σ′
(c,k,m)

|
−

1

2

exp[ψ(c,k,m)(t)], (2)

ψ(c,k,m)(t)=−
1

2
x′

(c,k,m)
(t)T(Σ′

(c,k,m)
)−1x′

(c,k,m)
(t), (3)

where Σ′
(c,k,m)

∈ ℜd′×d′ is the covariance matrix in the

compressed feature space.

Assuming that the projected data obey an HMM, the

posterior probability of x(t) is calculated as

P (c|x(t)) =

Kc
∑

k=1

αc
k(t)

∑C

c′=1

∑Kc′

k′=1 α
c′

k′(t)
, (4)

αc
k(1) = π

c
kb

c
k(x(1)), (5)

αc
k(t) =

Kc
∑

k′=1

αc
k′(t− 1)γ

c
k′,kb

c
k(x(t)), (1 < t ≤ T ) (6)

where γck′,k is the probability of a state change from k′ to

k in class c, bck(x(t)) is defined as the posterior probability
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for the state k in class c corresponding to x(t), and the prior

probability πc
k is equal to P (c, k)|t=0. Here, γck′,kb

c
k(x(t))

can be derived with the form

γck′,kb
c
k(x(t)) =

Mc,k
∑

m=1

γck′,krc,k,mg(x(t); c, k,m) (7)

where rc,k,m represents the mixture proportion.

B. Log-linearization

The parameters of TSDCA need to be empirically deter-

mined based on specific definitions. In particular, a large

quantity of training data is needed to train an HMM. Tsuji et

al. showed that the parameters of an HMM can be expressed

with a smaller number of coefficients using log-linearization

as a way of addressing this problem [5].

In this paper, (1) and (7) are considered based on a linear

combination of coefficient matrices and input vectors. First,

x′
(c,k,m)

(t) is transformed as follows:

x′
(c,k,m)

(t)

= V
(c,k,m)T(x(t)− µ(c,k,m))

, V
(c,k,m)Tx(t)− µ̂(c,k,m)

=









−µ̂
(c,k,m)
1 V

(c,k,m)
1,1 · · · V

(c,k,m)
1,d

...
...

. . .
...

−µ̂
(c,k,m)
d′ V

(c,k,m)
d′,1 · · · V

(c,k,m)
d′,d









[

1
x(t)

]

, (1)
W

(c,k,m)
X(t), (8)

where µ̂(c,k,m) ∈ ℜd′ corresponds to an image of the mean

vector mapped onto the compressed space from the input

space. Hence, x′
(c,k,m)

(t) is expressed by multiplication of

the coefficient matrix (1)
W

(c,k,m) and the novel input vector

X(t) = [1,x(t)
T
]T ∈ ℜd+1. Secondly, setting

ξck′,k,m(t) = γ
c
k′,krc,k,mg(x(t); c, k,m) (9)

and taking the log-linearization of ξck′,k,m(t) gives

log ξck′,k,m(t)

= [log γck′,k+log rc,k,m−
d′

2
log 2π−

1

2
log |Σ′

(c,k,m)
|,

−
1

2
s′

(c,k,m)
1,1 ,−s′

(c,k,m)
1,2 , · · · , s′

(c,k,m)
1,d′ , · · · ,

−
1

2
(2− δi,j)s

′(c,k,m)
i,j · · ·,−

1

2
s′

(c,k,m)
d′,d′ ]X

′(c,k,m)
(t)

, (2)
W

(c,k′,k,m)
X
′(c,k,m)

(t), (10)

where s′
(c,k,m)
1,1 , · · · , s′

(c,k,m)
d′,d′ are elements of the inverse

matrix (Σ′
(c,k,m)

)
−1

, and δi,j is a Kronecker delta, which

is 1 if i = j and otherwise 0. Additionally, X′
(c,k,m)

(t) ∈

ℜH(H = 1 + d′(d′+1)
2 ) is defined as

X
′(c,k,m)

(t)

= [1, x
′(c,k,m)
1 (t)

2
, x
′(c,k,m)
1 (t)x

′(c,k,m)
2 (t), · · · ,

x
′(c,k,m)
1 (t)x

′(c,k,m)
d′ (t), x

′(c,k,m)
2 (t)

2
,

x
′(c,k,m)
2 (t)x

′(c,k,m)
3 (t), · · · ,

1

11
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Fig. 1. Structure of the proposed neural network

x
′(c,k,m)
2 (t)x

′(c,k,m)
d′ (t), · · · , x

′(c,k,m)
d′ (t)

2
]. (11)

As stated above, the parameters of TSDCA can be ex-

pressed with a smaller number of coefficients (1)
W

(c,k,m)

and (2)
W

(c,k′,k,m) using log-linearization. If these coeffi-

cients are appropriately obtained, the parameters and the

structure of the model can be defined and the posterior

probability of high-dimensional time-series data for each

class can be calculated.

The next section describes how (1)
W

(c,k,m) and
(2)

W
(c,k′,k,m) are acquired as weight coefficients of a NN

through learning.

III. PROPOSED NEURAL NETWORK

A. Network structure

Figure 1 shows the structure of the proposed NN, which

is a seven-layer recurrent type with the weight coefficients
(1)

W
(c,k,m) and (2)

W
(c,k′,k,m) between the first/second and

third/fourth layers, respectively, and a feedback connection

between the fifth and sixth layers.

The first layer consists of d + 1 units corresponding to

the dimensions of the input data x(t) (t = 1, 2, · · · , T ) ∈
ℜd. The relationships between the input and the output are

defined as

(1)Ii(t) =

{

1 (i = 0)
xi(t) (i = 1, · · · , d)

, (12)

(1)Oi(t) =
(1)Ii(t), (13)

where (1)Ii(t) and (1)Oi(t) are the input and output of the

ith unit, respectively.

The second layer is composed of C × Kc × Mc,k × d′

units, each receiving the output of the first layer weighted

by the coefficient (1)w
(c,k,m)
j,i . The relationships between the

input (2)I
j
c,k,m(t) and the output (2)O

j
c,k,m(t) of the unit

{j, c, k,m} (j = 1, · · · , d′, c = 1, · · · , C, k = 1, · · · ,Kc,

m = 1, · · · ,Mc,k) are described as

(2)I
j
c,k,m(t) =

d
∑

i=0

(1)Oi(t)
(1)w

(c,k,m)
j,i , (14)

(2)O
j
c,k,m(t) =

(2)I
j
c,k,m(t), (15)
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where the weight coefficient (1)w
(c,k,m)
j,i is for each element

of the matrix (1)
W

(c,k,m) described as follows:

(1)
W

(c,k,m) =









(1)w
(c,k,m)
1,0 · · · (1)w

(c,k,m)
1,d

...
. . .

...
(1)w

(c,k,m)
d′,0 · · · (1)w

(c,k,m)
d′,d









. (16)

The third layer is comprised of C × Kc × Mc,k × H

(H = 1 + d′(d′+1)
2 ) units. The relationships between the

input (3)Ihc,k,m(t) and the output (3)Oh
c,k,m(t) of the units

{h, c, k,m} (h = 1, · · · , H) are defined as

(3)Ihc,k,m(t) =







1 (h = 1)
(2)O

j
c,k,m(t)

(2)O
j′

c,k,m(t)

(h=j′− 1
2j

2+(d′+ 1
2 )j−d

′+1)

, (17)

(3)Oh
c,k,m(t) =

(3)Ihc,k,m(t), (18)

where j ≤ j′(j′ = 1,· · · ,d′), and (17) corresponds to the

nonlinear conversion shown in (11).

The fourth layer is comprised of C × K2
c ×Mc,k units.

Unit {c, k′, k,m}(k′ = 1, · · · ,Kc) receives the output of

the third layer weighted by the coefficient (2)w
(c,k′,k,m)
h . The

input (4)Ick′,k,m(t) and the output (4)Oc
k′,k,m(t) are defined

as

(4)Ick′,k,m(t) =
H
∑

h=1

(3)Oh
c,k,m(t)

(2)w
(c,k′,k,m)
h , (19)

(4)Oc
k′,k,m(t) = exp

(

(4)Ick′,k,m(t)
)

, (20)

where the weight coefficient (2)w
(c,k′,k,m)
h corresponds to

each element of the vector (2)
W

(c,k′,k,m).

(2)
W

(c,k′,k,m) =
[

(2)w
(c,k′,k,m)
1 , · · · , (2)w

(c,k′,k,m)
H

]

(21)

The fifth layer consists of C × K2
c units. The output of

the fourth layer is added up and input into this layer. The

one-time-prior output of the sixth layer is also fed back to

the fifth layer. These are expressed as follows:

(5)Ick′,k(t) =

Mc,k
∑

m=1

(4)Oc
k′,k,m(t), (22)

(5)Oc
k′,k(t) =

(6)Oc
k′(t− 1)

(5)Ick′,k(t), (23)

where (6)Oc
k′(0) = 1.0 for the initial phase.

The sixth layer has C × Kc units. The relationships

between the input (6)Ick(t) and the output (6)Oc
k(t) of the

unit {c, k} are described as

(6)Ick(t) =

Kc
∑

k′=1

(5)Oc
k′,k(t), (24)

(6)Oc
k(t) =

(6)Ick(t)
∑C

c′=1

∑Kc′

k′=1
(6)Ic

′

k′(t)
. (25)

Finally, the seventh layer consists of C units, and its input
(7)Ic(t) and output (7)Oc(t) are

(7)Ic(t) =

Kc
∑

k=1

(6)Oc
k(t), (26)

(7)Oc(t) = (7)Ic(t). (27)

(7)Oc(t) corresponds to the posterior probability for class

c P (c|x(t)). Here, the posterior probability P (c|x(t))
based on TSDCA can be calculated if the NN coefficients
(1)

W
(c,k,m), (2)

W
(c,k′,k,m) are appropriately established.

B. Learning algorithm

A set of vector streams x(n)(t) is given for training with

the teacher vectorQ(n) = [Q
(n)
1 , · · · , Q

(n)
c , · · · , Q

(n)
C ]

T
(n =

1, · · · , N) for the nth input at T . The training process of the

proposed NN involves minimization of an energy function J

defined as

J =

N
∑

n=1

Jn = −

N
∑

n=1

C
∑

c=1

Q(n)
c log

(7)Oc(T )(n), (28)

to maximize the log-likelihood. Here, (7)Oc(T )(n) is the

output for an input vector at T . The weight modification for
(1)w

(c,k,m)
j,i and (2)w

(c,k′,k,m)
h based on the gradient method

is defined as

∆(1)w
(c,k,m)
j,i = −γ

N
∑

n=1

∂Jn

∂(1)w
(c,k,m)
j,i

, (29)

∆(2)w
(c,k′,k,m)
h = −γ

N
∑

n=1

∂Jn

∂(2)w
(c,k′,k,m)
h

, (30)

where γ is the learning rate.

The backpropagation-through-time (BPTT) algorithm [6]

is used for the weight modification. Based on this, the error

gradient within a stream is accumulated and the weight

modification is calculated.

To maintain orthogonality, orthonormalization using the

Gram-Schmidt process is applied to V
(c,k,m) in (1)

W
(c,k,m)

every time the weight coefficient is modulated. Using the

above algorithm, collective training is applied in relation

to the weight coefficients for dimensional reduction and

discrimination.

IV. EXPERIMENT

A. Method

To evaluate the validity of the proposed NN for real bio-

logical data, a classification experiment was conducted using

19-channel (d = 19) EEG data downloaded from Project

BCI [7] (see Fig. 2 for an example). The EEG signals were

recorded from a healthy subject who performed two tasks

(C = 2: (a) right-hand movement, (b) left-hand movement)

for about 128.6 seconds each. In the experiment, with 0.1

seconds of data as a sample for each class, 50 samples were

treated as training data, and the remaining 1,236 were used as

test data. Average classification rates were then calculated by

changing the combination of training/test data sets randomly

10 times and resetting the initial weight coefficients 10 times

for each combination. The parameters of the proposed NN

were Kc = 1, Mc,k = 1, d
′ = 1. The average classification

rate was also compared with those of the R-LLGMN [5], a

method developed by combining PCA and the R-LLGMN
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Fig. 2. Examples of EEG signals
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Fig. 3. Average discrimination rate and learning time for each method

(PCA with the R-LLGMN), and a multi-layered perceptron

(MLP). The number of states and the number of components

of the R-LLGMN were identical to those of the proposed

NN, and the number of compression dimensions with PCA

was 1. The MLP had 5 layers (3 hidden), and the number

of units in the input layer, the hidden layer and the output

layer were 19, 20 and 2, respectively.

B. Results and discussion

Figure 3 shows the average classification rate and learning

time for each method. It can be seen that the proposed NN,

the R-LLGMN and the MLP achieved high classification

rates (99.2 ± 1.0 [%], 99.6 ± 0.6 [%] and 99.3 ± 1.0 [%],

respectively; see Fig. 3 (a)).

Meanwhile, the learning times for the R-LLGMN and

the MLP were long (130.4 ± 0.1 [s] and 339.0 ± 4.3 [s],

respectively; see Fig. 3 (b)) because all dimensions were used

for classification with these NNs. Learning time was signif-

icantly reduced for the PCA with the R-LLGMN (4.3± 0.4
[s]), although its classification rate was low (62.6±9.3 [%])

because the features necessary for classification could not

be extracted with this combination. In contrast, the proposed

NN achieved higher-level classification performance and a

shorter learning time than conventional NNs (36.3±6.6 [s]).

This is presumably because compression and classification

can be realized simultaneously with the proposed NN, and

training can be implemented to achieve mapping to the lower

dimensional space where classification is effective. These

results demonstrate the validity of the proposed NN for EEG

classification.

V. CONCLUSION

This paper outlines a novel time-series classification model

called time-series discriminant component analysis (TSDCA)

and a recurrent probabilistic NN with dimensional reduction

based on TSDCA. This analysis involves several orthogonal

transformation matrices and an HMM that includes a GMM

for probabilistic density, thereby allowing dimensional reduc-

tion of input data and calculation of posterior probabilities

for each class. TSDCA is incorporated into a NN structure

using log-linearization so that the parameters are obtained as

weight coefficients of the NN.

High-dimensional EEG classification experiments showed

that the proposed NN demonstrated a high level of clas-

sification performance and relatively fast learning (average

classification rate: 99.2 ± 1.0 [%], average learning time:

36.3± 6.6 [s]).

In future research, the authors plan to apply this approach

to brain-computer interfaces and other interfaces involving

the use of biosignals. Theoretical analysis of the proposed

NN and improvement of the learning algorithm will also be

conducted.
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