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Abstract— This paper proposes a new manipulator control
system to support the performance of eating tasks for people
with severe physical disabilities, such as those with paralysis
caused by cervical spine injuries. The system consists of
an electromyogram (EMG) classification part, a manipulator
control part and a graphical feedback display. It classifies the
user’s intended motions from EMG signals measured using
a probabilistic neural network (PNN), and controls a robot
manipulator in line with the results. Multiple subject motions
can be accurately estimated based on learning of the user’s
EMG patterns using the PNN, thereby allowing operation of
the manipulator as desired to perform eating tasks.

To examine the performance of the proposed system, exper-
iments were performed with five subjects, including one with
paralysis from a cervical spine injury. The results demonstrated
that the system could be used to accurately classify the subjects’
EMG signals during motions, and that the unit could be easily
controlled using EMG signals.

I. INTRODUCTION

There is widespread demand in today’s world for the
development of a support robot system to provide the inten-
sive living assistance needed by physically disabled people
(e.g., forearm amputees, individuals suffering from muscular
dystrophy, and those with paralysis caused by cervical spine
injuries). The concept of a robot that provides assistance for
eating is considered to offer particularly promising options
for reducing the burden of patients at mealtimes.

Systems to support eating tasks have been widely de-
veloped [1]–[9] since around 1990. By way of example,
MANUS [1] is an electric wheelchair-based manipulator that
allows the user to take meals in a wheelchair; Handy-1 [2]
is a robot that provides assistance for eating, and consists of
a robot manipulator with a spoon and a food tray; and the
My Spoon feeding robot [3], [4] is a compact, lightweight
robot manipulator that supports tasks involved in eating. In a
previous study, Zhang et al. [6], [7] performed an experiment
involving the control of My Spoon using EMG signals based
on a thresholding method. As such signals provide a range of
information on variables such as muscle condition/power and
the user’s intended motions, they can be utilized to control
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robot systems. However, it can be difficult to discriminate
multiple intended user motions using simple thresholding
alone because EMG signals are significantly influenced by
skin condition and user ability. To assist people with severe
physical disabilities (such as those with paralysis caused
by cervical spine injuries) using robotics technology, it is
necessary to accurately determine intended user motions
from EMGs.

In the field of EMG pattern classification, probabilistic
neural networks (PNNs) and support vector machines have
been extensively studied and applied to various human
assistance systems. In particular, Tsuji et al. [10] proposed
a probabilistic neural network based on a Gaussian mixture
model called the log-linearized Gaussian mixture network
(LLGMN), and Fukuda et al. [11] developed an EMG-based
human-assisting manipulator using this network. As the LL-
GMN provides high-level performance in the classification of
bioelectric signals such as EMGs and electroencephalograms
(EEGs), it has been used to develop a variety of support sys-
tems including electric wheelchairs and speech synthesizers
[12]–[15]. Applying these developments to support for eating
tasks enables the design of technologies for use in daily life
by people with severe physical disabilities.

This paper proposes a novel robot control system to
support eating tasks based on EMG signals and a PNN.
The user’s intended motions are estimated from these signals
using the LLGMN, and signal differences among individuals
can be taken into account thanks to adaptive learning. Robot
manipulator operation commands can then be set according
to the user’s physical capacity. Using My Spoon as a robot
manipulator to support eating tasks allows the user to hold
and eat any kind of food based on simple layer-based
command selection. The system may enable patients with
paralysis caused by cervical spine injuries to feed themselves
freely.

This paper is organized as follows: Section II outlines the
proposed EMG signal-based eating support system, Section
III discusses its validity in relation to the results of EMG
classification and operation experiments, and Section IV
gives the conclusion.

II. EMG-BASED ROBOT SYSTEM FOR FEEDING SUPPORT

Figure 1 shows an outline of the proposed system, which
involves the two processes of EMG classification and ma-
nipulator control. My Spoon [6] was used as the feeding
assistance robot in this study. It includes a food tray and
a robot manipulator controlled by the user via a joystick
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Fig. 1. System components of the mealtime support manipulator
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Fig. 2. Example of feeding support manipulator operation by a patient
with a cervical spine injury

to pick up food from a tray. The proposed system supports
movement for eating based on EMG signals using My Spoon.
Figure 2 shows an example involving a patient with a cervical
spine injury using the proposed method to operate a feeding
support manipulator.

An overview of the prototype system developed is shown
Fig. 3. It consists of a laptop, EMG electrodes, an amplifier
and a robot manipulator, and can be operated using EMG
signals or a joystick. The following subsection outlines the
system’s EMG control method.

A. EMG classification part

An overview of the EMG classification part is shown in
Fig. 4. At the classification stage, EMG signals are measured
and used to identify user motion features, which are then
classified using the probabilistic neural network to allow
estimation of intended motions. The details of each process
are outlined below.

1) EMG signal measurement and feature extraction:
First, EMG signals measured using L pairs of electrodes
are digitized via an A/D converter (sampling frequency: 1
kHz), and are rectified and filtered out through a second-
order low-pass Butterworth filter (cut-off frequency: fc [Hz])
for each channel. These sampled EMG signals are defined
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Fig. 3. Prototype system developed
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Fig. 4. EMG classification part

as El (l = 1, . . . , L). The force information FEMG of the
user is then computed as follows:

FEMG =
1

L

L∑

l=1

El − Est
l

Emax
l − Est

l

(1)

where Est
l is the mean value of El in a state of muscle relax-

ation and Emax
l is the maximum voluntary contraction.When

FEMG is greater than the threshold Fth, motion is judged to
have occurred. Based on this process, malfunction caused by
the unexpected motions can be prevented.

El is then normalized to make the sum of L channels
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equal to 1 using the following equation:

xl =
El − Est

l
L∑

l=1

(El − Est
l )

(2)

feature vector x = [x1, x2, . . . , xL]
T ∈ �L is input to

probabilistic neural network, and is utilized to estimate user
motion.

2) EMG classification using the probabilistic neural net-
work: At the EMG classification stage, the LLGMN [10]
is utilized as the probabilistic neural network. This network
is based on the Gaussian mixture model (GMM) and a log-
linear model of the probability density function (pdf), and
a posteriori probability is estimated based on the GMM by
learning. By applying the log-linear model to a product of the
mixture coefficient and the mixture component of the GMM,
a semiparametric model of the pdf is incorporated into a
three-layer feed-forward neural network. Through learning,
the LLGMN distinguishes movement patterns with individual
differences, thereby enabling precise pattern recognition for
bioelectric signals such as EMGs and EEGs [10], [11].

In the proposed method, the system first instructs the user
to conduct C motions. The feature vectors calculated from
these motions are then input to the LLGMN as teacher vec-
tors, and the LLGMN is trained to estimate the a posteriori
probabilities of each motion. After the training, the system
can be used to calculate the similarity between patterns
in the user’s motions and trained motions as a posteriori
probabilities by inputting the newly measured vectors into
the LLGMN. In order to prevent discrimination errors, the
entropy H (which shows the obscurity of the information) is
calculated here from the LLGMN outputs. Since the output
of the LLGMN represents the a posteriori probability p(c|x)
for each motion c (c = 1, 2, ..., C), entropy is defined as

H = −
C∑

c=1

p(c|x) log p(c|x) (3)

If H is smaller than the discrimination determination thresh-
old value Hth, the movement with the highest aposteriori
probability becomes the result of discrimination. Otherwise,
if H exceeds Hth, discrimination is suspended as obscure
motion to prevent the ambiguous discrimination.

B. Manipulator control part

Figure 5 shows an outline of the manipulator control part.
Here, control commands (e.g., move spoon left, eat, etc.) for
My Spoon are allocated to the selection menu as layer-based
GUI choices. The user performs control via EMG signals
and operates the manipulator while looking at command
selections on the monitor.

My Spoon control consists of three stages: initialization of
the spoon position for eating (Stage A); area selection from
the four separate areas of the food tray (Stage B); and setting
of local position and eating (Stage C). The details are shown
in Table I.
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Fig. 5. Outline of manipulator control

In Stage A, the user moves the spoon (i.e., the tip of the
robot manipulator) and sets the eating position according to
the sitting posture and the mouth position. After this setup,
the spoon is moved to the initial position automatically, and
operation moves to Stage B.

The user selects the eating area of the food tray in Stage B,
and the manipulator moves to the top left-hand corner of the
selected area. In Stage C, the user controls the robot using
adjustment commands (move left, right, closer to body and
rotate spoon) to eat from the selected area. Selecting the eat
command at the desired position in the selected area makes
the robot pick up the food and move it to the eating position
(as set in Stage A). After the user eats the mouthful, the robot
returns to its initial position, and operation moves back to
Stage B. The user can then select an area of the food tray
and move through Stages B and C again.

Here, manipulator operation includes five commands in
each layer (see Table I). The system introduces a command
movement and selection method in manipulator operation,
allowing the user to work it even if the number of motions
(i.e., those the user can voluntarily conduct) is less than five.
As an example, if the user can conduct two motions (C =
2), all commands can be selected by allocating the motions
“command change (motion 1)” and “decision (motion 2)”.
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TABLE I
MY SPOON COMMAND GROUPS AND STAGES

AW: Away

Area 1

Area 2

Area 3

Area 4

No use

Move spoon away from mouth

Move spoon left

Move spoon right

Move spoon closer to body

Rotate spoon 90   clockwise

Pick up food and move spoon to mouth 

Move spoon to area 1 in food tray

Move spoon to area 2 in food tray

Move spoon to area 3 in food tray

Move spoon to area 4 in food tray

Move spoon to mouth

Move spoon upward vertically

Move spoon downward vertically

Finish setup and move spoon to initial position

Stage A: Initialization of eating position

Stage B: Selection of food tray area

Stage C: Local position setting and eating

TO: To

SP: Set initial position

TD: Turn direction

EF: Eat food

(a) Mimetic muscles 

(Depressor anguli oris)

(b) Mimetic muscles 

(Zygomaticus major)

(i)   Extensor Carpi Ulnaris

(ii)  Extensor Carpi Radialis

(iii) Flexor Carpi Ulnaris

(iv)  Flexor Carpi Radialis

(iv)

(i)

(ii)

(c) Forearm muscles

(i)   Right Depressor anguli oris

(ii)  Left Depressor anguli oris

(i)   Right Zygomaticus major

(ii)  Left Zygomaticus major

(i) (ii)

(i) (ii)

(iii)

Fig. 6. Electrode locations

III. EXPERIMENTS

To verify the validity of the proposed method, EMG
classification experiments and operation experiments were
conducted.

A. Experimental conditions

The subjects were four healthy males (A – D; average
age: 22.7± 0.58) and a patient with paralysis resulting from
a cervical spine injury (E; 51 years old). Subject E, who was
injured at the fifth cervical vertebra, had function C5 (ADL
total assistance level due to quadriplegia). He usually needs
full assistance for eating at mealtimes. Informed consent was
obtained from all subjects.

In the experiments, electrodes were attached to three dif-
ferent locations for the EMG measurement: (a) the depressor
anguli oris muscles (L = 2; on the right and left sides); (b)
the zygomaticus major muscles (L = 2; on the right and
left sides); and (c) the forearm muscles (L = 4; right hand;
extensor carpi ulnaris, extensor carpi radialis, flexor carpi
radialis and flexor carpi ulnaris), as shown in Fig. 6. This
paper assumes that the patients with cervical spine injuries
select to use from these muscles according to their physical
conditions. Using the depressor anguli oris muscles and the
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Fig. 7. Examples of measured EMG signals and classification results
(Subject A)

zygomaticus major muscles, three motions (C = 3; muscle
contraction on the right side, the left side and both sides)
were discriminated. For the forearm muscles, there were six
motion classes (C = 6; right hand: hand grasping/opening,
wrist flexion/extension, and pronation/supination). Each sub-
ject conducted the individual motions for a period of about
1 s, and the system measured the EMG patterns. For Subject
E, operation with the forearm muscles was not conducted
due to paralysis.

In the LLGMN learning process, 20 EMG patterns were
extracted from the signals for each operation, and the teacher
signals consisted of C×20 patterns (where C is the number
of motions). In addition, the threshold of Fth was 0.3, and
that of Hth was 0.2 determined by preliminary experiments.
The learning processes were finished within a few seconds
in all cases.

B. EMG classification experiments

The EMG patterns measured during the user motions were
discriminated using the LLGMN. Examples of these signals
and the classification results (Subject A; forearm motion) are
given in Fig. 7, which shows measured EMG signals, force
information, entropy and classification outcomes. The shaded
area indicates the time during which FEMG was greater than
Fth. It can be seen that EMG patterns with different features
were observed in each motion, and that the system was able
to classify the user’s intended motion accurately.
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Figures 8 shows the EMG pattern classification rates
calculated from 1000 test samples in each class for the three
measurement locations, and indicates relatively high values
in all cases. A high level of discrimination accuracy can
be achieved using the LLGMN, and the approach can be
considered applicable to practical feeding-robot operation
even if the experimental conditions (e.g., the number of
operations and the measurement positions) are changed.
These results lead us to conclude that the system can be
used to estimate intended motions (including for patients
with paralysis) with a high level of accuracy.

C. Operation experiments

In the experiments, the subjects were asked to select from
areas 2 and 3, and to eat freely. For manipulator control using
facial muscles, the motions were allocated as M1: move to
next command selection; M2: move to previous command
selection; and M3: execute selected command. In operation
using forearm motion, five motions were allocated directly
to each command. All subjects were allowed to practice with
the proposed system for a few minutes in advance.

An example of the operation results (for Subject A) based
on the use of EMG signals measured from the zygomaticus
major muscles are shown in Fig. 9. The figure plots smoothed
and filtered EMG signals, force information, classification
results, and stages and selected commands. The shaded area
shows the time during which FEMG was greater than Fth.
The photographs in Figs. 9 (a)–(c) highlight each stage of
operation.

The figure shows that the subjects were able to perform
voluntary EMG signal control and select individual com-
mands using only three eye motions. For example, position
initialization finished at 12 s, and operation moved to Stage
2. Area 2 was then selected (Stage 2; 15.5 s), and the
manipulator tip was used to pick up food (Stage 3; from 16
to 28 s). In response to EMG operation by the user at 28 s,
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Fig. 9. Example of experimental results

the manipulator moved to the eating position and the subject
ate the mouthful. No command input errors were observed
during the experiments.

As all subjects (including the one with paralysis) were
able to control the manipulator and eat using the proposed
method, we conclude that the system supports feeding for
individuals with severe physical disabilities such as paralysis
caused by cervical spine injuries.

Finally, operability with the proposed method was com-
pared with that seen in experiments on joystick-based ma-
nipulator operation involving Subjects B and C. Standard
joystick and manual mode [3] was utilized for joystick
operation. In the manual mode [3], by moving the joystick
in four directions (up, down, left, right), any food item
within the included tray can be eaten in any desired order.
Details of joystick-based operation are almost same as the
proposed method, and are outlined as follows: 1. select
the compartment from the included tray; 2. after the spoon
reaches the compartment, use the joystick to fine-tune its
position near the item; 3. instruct the spoon to grasp the food;
and 4. the spoon grasping the item automatically approach
the mouth.

The subjects were asked to eat the food in areas 1, 3 and
4. In EMG signal-based operation, electrodes were set on
the zygomaticus major muscles (Fig. 6 (b)), and three eye
motions (C = 3; muscle contraction on the right side, the
left side and both sides) were utilized. The other parameters
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TABLE II
RESULTS OF COMPARISON EXPERIMENTS

Subject B Subject C Subject D
Joystick Mean [s] 84.4 89.4 87.0

Standard deviation [s] 1.14 0.89 2.12
EMG switch Mean [s] 94.6 94.8 95.6

Standard deviation [s] 2.61 1.10 2.41

of the proposed method were the same as those outlined in
III-A. Five trials were performed, and the experiments lasted
about an hour.

The results are shown in Table II, in which each value
represents the average for all the trials. It can be seen that
the difference between the operation methods was small, al-
though EMG operation took longer. These outcomes indicate
that operability with the proposed method does not differ
greatly from that of joystick operation. Further investigation
of the capabilities of each method will be necessary in future
work.

IV. CONCLUSION

This study investigated a novel control system for the
My Spoon feeding robot based on EMG classification. The
system measures the user’s EMG signals during various
motions such as wrist flexion/extension and eye motion,
and estimates intended motions using a probabilistic neural
network. The user can voluntarily control the manipulator to
support eating tasks by selecting operation commands using
EMG signals.

EMG classification accuracy and operability with the
proposed method were verified in experiments involving five
subjects. The results showed that EMG signals measured
from healthy individuals and a patient with paralysis caused
by a cervical spine injury could be classified accurately, and
that the subjects were able to control the manipulator to eat
as desired.

In future work, we plan to investigate operability using
the proposed method with an increased number of subjects
(including forearm amputees and muscle dystrophy patients)
and a wider range of eating-related tasks and EMG measure-
ment locations. We also plan to discuss the optimal electrodes
locations for individuals, mental workload and risk and safety
of the proposed method for subjects.
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