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Abstract—This paper introduces a motion and channel selec-
tion method based on a partial Kullback-Leibler (KL) informa-
tion measure. In the proposed method, the probability density
functions of recorded data are estimated through learning
involving a probabilistic neural network based on the KL
information theory. Partial KL information is defined to support
evaluation of the contribution of each dimension and class
for classification. Effective dimensions and classes can then be
selected by eliminating ineffective choices one by one based
on this information, respectively. In the experiments, effective
channels for classification were first selected for each of the
six subjects, and the number of channels was reduced by
32.1± 25.5%. After channel selection, appropriate motions for
classification were chosen, and the average classification rate
for the motions selected using the proposed method was found
to be 91.7± 2.5%. These outcomes indicate that the proposed
method can be used to select effective channels and motions for
accurate classification.

Index Terms—Kullback-Leibler information, class selection,
variable selection, pattern classification, electromyogram (EMG)

I. INTRODUCTION

To control machines using biological signals, it is neces-
sary to determine the relationships between these signals and
actual motions. Various methods to classify biological signal
patterns have been proposed [1]–[3]. Tsuji et al. proposed a
log-linearized Gaussian mixture network (LLGMN) [2] that
includes a Gaussian mixture model (GMM), and confirmed
its effectiveness in biological signal classification [2], [3].

To classify biological signal patterns correctly, optimal
recording sites for such signals and motions that are ac-
curately classified must be selected in advance. Studies on
optimal recording site selection have conducted by evaluating
all combinations of EMG channels [4], [5]. In regard to
selecting motions (classes) for classification, Kita et al.
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proposed a method for extracting motions that are clearly
separated from one another [6]. With a large number of
channels, however, computation takes a long time. Moreover,
to realize motion classification using the selected channels’
EMGs and/or motions, a classifier needs to be constructed
after selection. Additionally, related efforts to date have
focused only on the selection of optimal channels or motions.

The authors have developed a channel selection method
based on the Kullback-Leibler (KL) information [7]. In
this method, a partial KL information measure is defined
as a metric of selecting optimal channels and ineffective
channels for classification are eliminated one by one. A
motion selection method involving the application of partial
KL information for optimal class selection has also been
proposed [8]. However, selecting the appropriate channels
and motions cannot be performed at the same time.

Against such a background, this paper describes a motion
and channel selection method based on the use of a partial
KL information. In the proposed method, recorded signals are
regarded as probability variables, and their probability density
functions (pdfs) are estimated using probabilistic neural net-
work (PNN) learning based on KL information. Additionally,
ineffective channels and motions that are difficult to classify
are eliminated one by one based on partial KL information
[7], [8]. Under the proposed method, appropriate motions and
channels can be selected at the same time.

II. A MOTION AND CHANNEL SELECTION METHOD BASED

ON A PARTIAL KL INFORMATION MEASURE

A. Partial KL Information Measure [7], [8]

A pattern classification problem can be regarded as an
estimation problem of the pdf for a given data [2]. Let
us consider a case that 𝑁𝑘 samples belong to the class
𝑘 (𝑘 = 1, 2, ⋅ ⋅ ⋅ ,𝐾) and each sample is an 𝐿-dimension
variable vector (𝒙 = [𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝐿] ∈ ℜ𝐿). It is assumed
that 𝒙(𝑘)

𝑛 ∈ ℜ𝐿 is the probability variable vector of the 𝑛th
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sample in the 𝑘th class, and that the probabilities of the 𝑘th
class in the true probability distribution and the estimated
distribution are 𝑃 𝑘

𝑛 and 𝑄𝑘
𝑛, respectively. The KL information

is calculated using

𝐼𝑛(𝑷 ,𝑸) =
𝐾∑

𝑘=1

𝑃 𝑘
𝑛 log

𝑃 𝑘
𝑛

𝑄𝑘
𝑛

=
𝐾∑

𝑘=1

𝑃 𝑘
𝑛 log𝑃 𝑘

𝑛 −
𝐾∑

𝑘=1

𝑃 𝑘
𝑛 log𝑄𝑘

𝑛, (1)

where 𝑷 = [𝑃 1
𝑛 , 𝑃

2
𝑛 , ⋅ ⋅ ⋅ , 𝑃𝐾

𝑛 ]T and 𝑸 = [𝑄1
𝑛, 𝑄

2
𝑛, ⋅ ⋅ ⋅ ,

𝑄𝐾
𝑛 ]T, and the first term on the right side is reduced to a

constant; accordingly, if the second term reaches a minimum,
then so does the KL information. This means that the
estimated distribution is close to the true distribution.

Based on this concept, the authors proposed a partial KL
information measure with 𝐸[𝑖] and 𝐸[𝑖′] as a metric for
variable and class selection [7], [8]:

𝐸[𝑖] =
𝐼(𝑷 ,𝑸)

𝐼(𝑷 [𝑖],𝑸[𝑖])
=

∑𝑁
𝑛=1 𝐼𝑛(𝑷 ,𝑸)

∑𝑁
𝑛=1 𝐼𝑛(𝑷 [𝑖],𝑸[𝑖])

, (2)

𝐸[𝑖′] =
𝐼(𝑷 ,𝑸)

𝐼(𝑷 ′
[𝑖′],𝑸

′
[𝑖′])

=
𝑁 ′

𝑁

∑𝑁
𝑛=1 𝐼𝑛(𝑷 ,𝑸)

∑𝑁 ′
𝑛′=1 𝐼

′
𝑛(𝑷

′
[𝑖′],𝑸

′
[𝑖′])

, (3)

Here, 𝐼𝑛(𝑷 [𝑖],𝑸[𝑖]) and 𝐼𝑛(𝑷 [𝑖′],𝑸[𝑖′]) are the KL infor-
mation for the 𝑛th sample 𝒙𝑛, where 𝑷 [𝑖′] = [𝑃 1

𝑛 , ⋅ ⋅ ⋅ ,
𝑃 𝑖′−1
𝑛 , 𝑃 𝑖′+1

𝑛 , ⋅ ⋅ ⋅ , 𝑃𝐾
𝑛 ]T and 𝑸[𝑖′] = [𝑄1

𝑛, ⋅ ⋅ ⋅ , 𝑄𝑖′−1
𝑛 , 𝑄𝑖′+1

𝑛 ,

⋅ ⋅ ⋅ , 𝑄𝐾
𝑛 ]T. They are obtained using the probability variables

𝒙[𝑖] and 𝒙[𝑖′], in which the 𝑖th dimension and the 𝑖′th class are
eliminated, respectively. In addition, 𝑁 is the total number
of samples, and 𝑁 ′ is the total after class elimination. The
𝑖th dimension or the 𝑖′th class for which 𝐸[𝑖] or 𝐸[𝑖′] is the
largest can be eliminated [7], [8].

B. Partial KL Information-based Motion and Channel Selec-
tion Using PNN

This section reports on motion and channel selection
method using a partial KL information measure. The structure
of the selection method is shown in Fig. 1. In the proposed
method, the subject’s motions are learned by the LLGMN
[2], and effective channels and motions for classification are
selected at the same time.

1) Feature Extraction [3], [7], [8]: First, EMG signals
measured from 𝐿 pairs of electrodes are digitized using
an A/D converter (sampling frequency: 1 [kHz]), and are
rectified and filtered out through a second-order Butterworth
filter (cut-off frequency: 1 [Hz]). These sampled signals are
defined as 𝐸𝑀𝐺𝑙(𝑛) (𝑙 = 1, ⋅ ⋅ ⋅ , 𝐿). Next, the 𝐸𝑀𝐺𝑙(𝑛)
values are normalized to make the sum of 𝐿 channels equal
to 1, and resulted vector is defined as the feature vector
𝒙(𝑛) ∈ ℜ𝐿(𝑛 = 1, ⋅ ⋅ ⋅ , 𝑁). Moreover, a channel average
of 𝐸𝑀𝐺𝑙(𝑛) is defined as force information.

2) Learning and Selection of Channels and Motions [2],
[3], [7], [8]: The LLGMN, which is based on the GMM and
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Fig. 1. Structure of the proposed motion and channel selection method

a log-linear model of the pdf [2], is used for learning. This
network can calculate the a posteriori probability 𝒀 (𝑛) =
[𝑌1(𝑛), 𝑌2(𝑛), ⋅ ⋅ ⋅ , 𝑌𝐾(𝑛)]T for the input pattern 𝒙(𝑛) after
learning [2].

A simple backpropagation algorithm is feasible when the
teacher vector 𝑻 (𝑛) = [𝑇1(𝑛), 𝑇2(𝑛), ⋅ ⋅ ⋅ , 𝑇𝐾(𝑛)]T for the
𝑛th input vector 𝒙(𝑛) is given. As the energy function 𝐽 for
the network,

𝐽(𝒙∗) = 𝐼(𝑻 ,𝒀 ∣𝒙∗) =
1

𝑁

𝑁∑

𝑛=1

𝐾∑

𝑘=1

𝑇𝑘(𝑛) log
𝑇𝑘(𝑛)

𝑌𝑘(𝑛)
(4)

is used, and learning is performed to minimize the KL
information for true distribution. This means that a learned
network can approximate the data distribution. Using this
energy function, therefore, it is possible to select optimal
dimensions (channels) and classes (motions) that can be
classified at the same time as the learning network.

The initial vector set 𝒙∗ ∈ ℜ𝐿 is defined as 𝒙∗ =
{𝒙(𝑛)∣𝑛 = 1, 2, ⋅ ⋅ ⋅ , 𝑁} , and ineffective dimensions are
eliminated one by one from 𝒙∗ based on the variable
selection method [7]. Here, 𝐷 and 𝐷[𝑖] are the average
classification rates for 𝒙∗ and 𝒙∗

[𝑖], respectively, and 𝒙∗
[𝑖] is

the feature vector for which the 𝑖th dimension is eliminated
from 𝒙∗. Channels are first eliminated one by one while
𝐷[𝑖] ≥ 𝐷. After channel selection, motions that are easy
to classify can be selected using the class selection method
[8] from the vector set 𝒙∗′ ∈ ℜ𝑅, in which 𝑟 dimensions
are eliminated by the channel selection (𝑅 + 𝑟 = 𝐿). For
motion selection, motions are eliminated one by one until
the average classification rate for the selected motions 𝐹[𝑖′] is
greater than the pre-specified threshold 𝐹𝜃. Effective channels
and motions are thus selected sequentially.

3) Motion Classification [2], [3], [7], [8]: For EMG
classification, since the output of the network’s third layer
provides the a posteriori probability of each class, Bayesian
discrimination (in which the class with the highest a posteri-
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Fig. 2. Overview of the sheet electrode
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Fig. 3. Forearm motions for classification

ori probability becomes the result) is used for classification.

III. EXPERIMENTS

A. Methods

The subjects were five healthy volunteers (A – E) and one
upper-limb amputee (F). In the experiments, EMG signals
were recorded using an MT-11 multitelemeter (gain: 60 [db];
NEC Sanei Co., Ltd.). A pair of sheet electrodes (Unique
Medical Co., Ltd., see Fig. 2) was attached to each healthy
subject’s right forearm. Since the maximum number of chan-
nels which can measured using MT-11 is 13, 13 pairs of
electrodes were selected in advance from all the electrodes in
the sheets (𝐿 = 13). Two pairs of Ag/AgCl EMG electrodes
(SEB120, GE Marquette) were attached to the amputation site
of subject F (𝐿 = 2). Subjects A – E spent a few seconds
performing each of 16 motions (𝐾 = 16; see Fig. 3) for 15
times, and Subject F performed 11 motions.

The sampling frequency was 1 [kHz], six sets of recorded
data were used for learning and selection of channels and
motions (referred to here as the selection data), and the others
were used only for classification (referred to as evaluation
data). The number of selection data was 120 samples (ran-
domly selected from 1,000×6 samples for each motion), and
the number of evaluation data for each motion was 9,000
samples.

B. Results and Discussion

Figure 4 shows an example of the recorded data, and
force information. The gray zone indicate that the force
information less than the predefined threshold 𝐹th. The
threshold value was set as 𝐹th = 0.2 to enable the detection
of voluntary motions [3]. It can be seen that the EMG
signals measured from each channel are different for each
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Fig. 4. Examples of recroded signals in the experiment

motion. Firstly, effective channels are selected for each user.
Table I lists channel combinations chosen using the channel
selection method, along with the average classification rates
for selection data before and after channels were selected. It
can be seen that the rates increased after channel selection for
Subjects A–E. This is because redundant channels, which are
not effective for classification, can be eliminated using this
method. Additionally, since a small number of channels (two
channels) were attached in advance, all two channels were
selected for Subject F. It can be concluded that the channel
selection method was capable for selecting effective channel
combinations.

On the other hand, Fig. 5 shows the results of reducing
the number of motions using selection data measured from
Subject C. It is confirmed that the classification rates are
lower than the threshold with 16 to 11 motions, and ten
motions were selected by the termination condition of the
proposed method. The average classification rate was 98.4
± 2.1%. Table II shows motions selected and the average
classification rates of selection data for all subjects. Here,
since the average classification rate of the selection data is
high (98.0 ± 1.2%), motions are not eliminated for Subject A,
B and D. From these results, it is confirmed that classification
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TABLE I
CHANNELS SELECTED USING THE CHANNEL SELECTION METHOD AND

CLASSIFICATION RATES OF ALL MOTIONS FOR SELECTION DATA USING

THE SELECTED CHANNELS. THIRTEEN CHANNELS WERE ATTACHED TO

SUBJECTS A - E AND TWO CHANNELS TO SUBJECT F IN ADVANCE.

Sub. A Sub. B Sub. C

Selected channels

1, 2, 3, 4, 5,
6, 8, 9, 10, 11,
12, 13

2, 3, 5, 8, 9, 10,
13

2, 3, 5, 9, 10

CRa [%] 98.8 97.0 73.9
CRsc [%] 99.4 97.4 79.4

Sub. D Sub. E Sub. F

Selected channels
1, 2, 4, 5, 8, 11 2, 3, 4, 5, 6, 7,

9, 10, 11, 13
1, 2

CRa [%] 95.2 92.6 43.9
CRsc [%] 95.4 94.2 43.9

CRa: Classification rates for the selection data using all channels
CRsc: Classification rates for the selection data using the selected channels
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Fig. 5. Relationships between classification rates and partial KL information
in the motion selection experiment (Subject C)

rates increase: the average rates are 97.8 ± 1.0% for selection
data. Average classification rates for the evaluation data are
also shown in Fig. 6, which outlines all subject’s classification
results obtained using the selected channels’ EMGs for
all motions and selected motions. The results of using all
channels and motions are also shown for comparison. The
average classification rate for all motions is 77.3 ± 21.2%
when all channels are used, and 78.2±20.0% when only the
selected channels are used, and that for the selected motions
is 91.7 ± 2.5%. The average rates do not differ when channels
are eliminated and increase when motions are selected using
the proposed method. These results indicate that the method
can be used to select appropriate motions and channels for
individual users’ conditions.

IV. CONCLUSION

This paper introduces selection of appropriate motions
and effective channels for classification using the partial KL
information measure. In order to confirm its effectiveness, the
method was applied to motion selection and EMG channel
selection for EMG classification. In experiments on forearm
motion classification, effective channels and appropriate mo-
tions were selected for each subject; the number of channels
was reduced by 32.1± 25.5% and the average classification
rate using the selected motions was 91.7 ± 2.5% with a high
accuracy. In future research, we plan to apply this channel
and motion selection approach to training systems for EMG-
based human-machine interfaces.

TABLE II
MOTIONS SELECTED USING THE PROPOSED MOTION SELECTION

METHOD AND AVERAGE CLASSIFICATION RATES OF THE SELECTED

MOTIONS FOR SELECTION DATA

Sub. A Sub. B Sub. C

Selected motions

1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11,
12, 13, 14, 15,
16

1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11,
12, 13, 14, 15,
16

1, 3, 4, 5, 6, 9,
12 ,13 ,14, 15

CRsm [%] 99.4 97.3 98.4
Sub. D Sub. E Sub. F

Selected motions

1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11,
12, 13, 14, 15,
16

1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11,
12, 13, 14, 16

5, 6, 7, 10

CRsm [%] 97.4 96.7 97.5

CRsm: Classification rates for the selection data using the selected motions
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Fig. 6. Classification rates using all motions and selected motions. The
average classification rates for all motions using all channels were shown as
an comparison.
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