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Abstract: Recently, the importance of odors has begun to be emphasized as well as methods for their evaluation, espe-
cially in the fragrance and food industries. Although odors can be characterized by their odorant components,
their chemical information cannot be directly related to the flavors we perceive. Recent research has revealed
that neuronal activity related to glomeruli (which form part of the olfactory system) is closely connected to
odor qualities. In this paper, we propose a neural network model of the olfactory system in mice to predict
glomerular activity from odorant molecules. To adjust the parameters included in the model, a learning al-
gorithm is also proposed. The results of simulation proved that the relationship between glomerular activity
and odorant molecules could be approximated using the proposed model. In addition, the model could predict
glomerular activity to a certain extent. These results suggest that the proposed model could be utilized to
predict odor qualities for future application.

1 INTRODUCTION

As considerable evidence has been presented to show
that odours have an effect on memory and emotions,
the importance of smells has begun to be recognized
beyond their role as components of flavor (Herz and
Engen, 1996). Gas chromatography is a useful tech-
nique used to detect the odorant molecules (or simply
odorants) contained in an odour (van Ruth, 2001), and
the analyzed data are used to characterize the odour
(Aznar et al., 2001; Semmelroch and Grosch, 1995).
However, it is impossible to relate information about
odorant molecules to odour qualities without the pro-
cess of evaluation by human senses. One solution to
this problem is to build a regression model to con-
vert the data obtained from gas chromatography to the
indices of sensory evaluation (Limpawattana et al.,
2001). In this case, the regression model is special-
ized to the objective odorants, making it necessary to
build different models for different kinds of odour.

Another solution is to build a model of the ol-
factory system based on biological insight. The re-
lationship between odorants and odour qualities is
mostly investigated from the field of biological re-
search. The most widely supported stereochemical
theory (Amoore, 1963) suggests that odour qualities
largely depend on the shape of the odorant molecules
involved. This theory is consistent with recent find-
ings regarding the olfactory receptor gene family
(Buck and Axel, 1991). The most important informa-
tion directly related to odour qualities is considered
to be that regarding activity on the glomeruli, which
are distributed over the surface of the olfactory bulb
(Mori and Yoshihara, 1995). Moreover, glomerular
activity evoked by input from olfactory receptors is
odour-specific, and odour qualities can be predicted
from the activated region of the glomeruli (Youngen-
tob et al., 2006).
Outside the field of biological research, there are

few approaches that reveal the relationship between
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Figure 1: Structure of the olfactory system of rats.
Glomerular activity downloaded from the Glomerular Re-
sponse Archive (Leon and Johnson, 2009).

odour qualities and odorants from the field of engi-
neering. Most related engineering researches have
focused on developing biomimetic algorithms to dis-
criminate similar odours (Gutierrez-Osuna, 2002), but
not to predict qualities for unknown odorants. This
may be because a considerable data set is needed to
approximate odorants to odour qualities, especially
for the human senses. In regard to the olfactory sys-
tem of rats, however, more than 300 types of glomeru-
lar activity evoked by different odorants are provided
online (Leon and Johnson, 2009).
Against this background, we report on a neural

network model of the olfactory system of rats to en-
able prediction of glomerular activity from odorant
molecules, since the basic structure of the olfactory
system in rats has a lot in common with that of hu-
man. We also propose a learning algorithm to adjust
the parameters included in the model. This consists
of a training algorithm for radial basis function (Chen
et al., 1991) and the Nelder-Mead (simplex) method
(Nelder and Mead, 1965).
This paper is organized as follows: In Section 2,

biological knowledge regarding the olfactory system
of rats is briefly explained. Section 3 proposes an ol-
factory model and a parameter-setting algorithm for
parameter adjustment. Section 4 details simulations
of parameter settings and prediction of glomerular ac-
tivity in rats. Finally, Section 5 concludes the paper
and outlines work planned for the future.

2 THE OLFACTORY SYSTEM OF
RATS

Figure 1 shows the basic structure of the olfactory
system in rats, which consists of three parts: recep-
tor neurons, the olfactory bulb and the piriform cor-
tex. Receptor neurons are distributed on the surface of
the nasal chamber, expressing single receptor protein
from among thousands of different varieties (Buck
and Axel, 1991); these neurons are activated and send
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Figure 2: Glomerular module arrangement adapted from the
Glomerular Response Archive (Leon and Johnson, 2009).

signals to the olfactory bulb. The axons from the re-
ceptors that express the same receptor terminate at the
same point on the surface of the olfactory bulb (Mori
and Yoshihara, 1995). The terminals of these axons
form a small, round cluster called a glomerulus. A 2D
map of glomerular distribution can be associated with
receptor genes as well as with odorants, and is called
an odour map (Mori and Yoshihara, 1995). The ac-
tivity of the glomeruli is thus odour-specific. This ac-
tivity is then communicated to the deeper layer of the
olfactory bulb, which mainly consists of mitral and
granule cells. The piriform cortex performs odour
recognition based on the output of the mitral cells,
whose information is modified according to glomeru-
lar activity. It has been reported that this activity rep-
resents important information that is closely related
to the sense of smell in animals (Youngentob et al.,
2006).
Glomerular activity for more than 300 kinds of

odorant has been measured by Leon et al (Leon and
Johnson, 2009), and is shown very clearly using color
contour charts. From the results of this measurement,
Johnson et al. (Johnson et al., 2005) defined assem-
blies of glomeruli as a glomerular modules, which
respond to a specific molecular features such as the
functional group. Figure 2 shows an unrolled map
of glomeruli; the boundaries and unique letters de-
note the areas and symbols of the glomerular mod-
ules. More minor features, such as the length of the
carbon chain, are coded within a module (Johnson and
Leon, 2007). Accordingly, if these rules can be sys-
tematically approximated, glomerular activity evoked
by untested odorants could be predicted.

3 MODEL

We assumed that glomerular activity can be expressed
by a summation of Gaussian functions whose param-
eters are modulated by the activity of the receptors.
Under this assumption, the radial basis function-like
model shown in Figure 3 is proposed. The model con-
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sists of four layers: receptor, exponential-Gaussian,
Gaussian, and glomeruli. This section describes the
processes in each layer and the learning algorithm
used.

3.1 Model Structure

The receptor layer consists of M units corresponding
to the number of arbitrarily defined odorants (repre-
sentative odorants), and each receptor unit is most
strongly activated by a representative odorant. Since
actual receptors are also activated by odorants with a
structure similar to that of the representative odorant,
the output of the receptor unit is defined as the simi-
larity between the representative and input odorants.
In this model, the graph kernel function K(Gl,Gm)
proposed by Kashima et al (Kashima et al., 2004) is
introduced to calculate structural similarity between
the molecules. In this function, the input odorant and
representative odorant are expressed by the graphsGl
and Gm in Figure 4, where the atoms correspond to
nodes and the bonds to edges. In addition, unique la-
bels are allocated to the types of atoms and bonds.
For example, hydrogen atoms (H) are labeled as N3
in Figure 4. The kernel function is then defined as:
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K(Gl ,Gm)

= ∑hl∑hm p(hl|Gl)p(hm|Gm)KL
(
b(hl),b(hm)

)
,

(1)

where hl and hm are arbitrary paths in the graphs ofGl
and Gm respectively, and p(hl|Gl) and p(hm|Gm) are
the probabilities of the paths to be selected by the ran-
domwalk algorithm. KL(b(hl),b(hm)) is a function to
compare the path selection as shown below:

KL(b(hl),b(hm)) =

{
1, b(hl) = b(hm)
0, b(hl) �= b(hm)

(2)

where b(hl) and b(hm) are the labels of path hl and
hm, respectively. The output of the receptor layer
1Um(Gl) is defined as the generalized value calculated
by Equation (3):

1Um(Gl) =
K(Gm,Gl)√

(K(Gm,Gm)K(Gl ,Gl))
, (3)

where 1Um(Gl) becomes 1 when the representative
odorant is input (Gl = Gm).
The output of each Receptor unit is input into

N exponential-Gaussian units so that the unit num-
ber in the exponential-Gaussian layer becomes MN.
Exponential-Gaussian units play a role in control-
ling activity strength at the connected region on the
Glomeruli layer. Figure 5 shows an example of the
relationship between the output of a Receptor unit
and the measured activity strength at the region of
the glomeruli to which the Receptor unit is con-
nected through the subsequent exponential-Gaussian
and Gaussian units. As shown in Figure 5, the activity
strength grows exponentially at first, then drops when
the value of Ur approaches to 1. This trend may be
caused by the structure of the glomeruli. Glomeruli
that are topologically close to each other respond to
similar odorants (Johnson and Leon, 2007), but also
send inhibitory signals to each other (Aungst et al.,
2003). As a result, when an odorant similar to the rep-
resentative one is input, inhibitory signals from sur-
rounding glomeruli suppress the excitatory input from
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the receptors. Hence, the exponential-Gaussian unit
is defined by the following equation to convert the re-
ceptor unit output into the activity of the glomeruli:
2Um,n = a1 exp

(
a21Um(Gl)

)
− a3 exp{−(10a4)

(1Um(Gl)−a5
)2
},

(4)

where the first term on the right is an exponential
function, the second term is the Gaussian function,
and a1...a5 are the parameters defined by the learning
algorithm described in Section 3.2.
The output of the exponential-Gaussian layer is

input to the Gaussian layer through the connective
weightCm,n as follows:

3um,n =Cm,n
2Um,n, (5)

The Gaussian layer diffuses the activity to the
neighboring region on the Glomeruli layer. The out-
put of the Gaussian function is given by the following
equation:

4Um,n(x,y)

= 3Um,n exp

{
(cxm,n−x)2

α2m,n
+

(cym,n−y)2

β2m,n

}
,

(6)

where the parameters αm,n and βm,n control the width
of the Gaussian curve.
The connections from the Gaussian layer to the

glomeruli layer allocate the output of the Gaussian
units to proper center coordinates (cxm,n, cym,n) on the
glomeruli layer. The inputs to each of the coordinates
are added by

V (x,y) =
M

∑
m=1

N

∑
n=1

4Um,n(x,y), (7)

from which the estimated glomerular activity is ob-
tained.

3.2 Learning Algorithm

To find proper parameters for the model, this section
proposes a learning algorithm consisting of two steps.
The adjustable parameters are the representative odor-
ants Gm of the Receptor units, the parameters in the
exponential-Gaussian units ai(i= 1,2, ...,5), the con-
nective weights Cl,m from the exponential-Gaussian
layer to the Gaussian layer, and the center coordi-
nates (cxm,n, cym,n) to which the Gaussian units are
connected. The first step determines the parameters
Gm, Cl,m and (cxm,n, cym,n), and the second step ad-
justs ai(i = 1,2, ...,5). Note that, for simplification,
the width of the Gaussian curves αm,n and βm,n is
fixed in this paper. To implement the algorithm, M

representative odorants (GT,1...GT,M) and the corre-
sponding glomeruli activities (VT,1(x,y)... VT,M(x,y))
measured by Leon and Johnson (2009) are chosen in
advance as a learning data set. Since the original ac-
tivity patterns consist of graphical data in png format,
they were converted to numerical data according to
the color scale shown on the website (Leon and John-
son, 2009). The converted data were then normalized
to a value range of [0,1].

First Step. First, the receptor units responding to
each representative odorant are defined, thus Gm =
GT,m.
Then, each instance of glomerular activity evoked

by a representative odorant is approximated by the
Gaussian functions using the learning algorithm for
the radial basis function (RBF) (Chen et al., 1991).
This approximation gives the center coordinates
(cxm,n, cym,n) and the peak value of the Gaussian unit.
The peak obtained value is assigned toCm,n. Note that
the number of Gaussian function N is also an impor-
tant parameter, and is analyzed in the next simulation
section.

Second Step. The parameters included in each
exponential-Gaussian unit are determined using the
Nelder-Mead (simplex) method (Nelder and Mead,
1965); this algorithm minimizes the objective func-
tion defined below:

Em,n =
M

∑
l=1

(
VT,m(xm,n,ym,n)−

1Um(Gl)
)2

. (8)

4 SIMULATION

This section reports on verification of the learning al-
gorithm and the prediction ability of the model by
comparing the output of the glomeruli layer with mea-
sured glomerular activity.

4.1 Learning

First, learning data as shown in Figure 6(a) were pre-
pared to implement the learning algorithm. This data
set consists ofM = 8 kinds of representative odorants
(Gm, m ∈ 1,2, ...,8) that share the functional group
of alcohol with different carbon numbers and the cor-
responding measured glomerular activity (VT,o(x,y),
o = m). This set was chosen because large shifts of
the activation area in the glomeruli can be observed
with increases in the carbon number. From Figure
6(a), it can be confirmed that the activation area shifts
from the caudal to the rostral side (left to right) as the
carbon number increases.
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(a) Learning data set adapted from Glomerular Response Archive (Leon and Johnson, 2009)
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Figure 6: Learning results.

To find the best Gaussian function number N,
learning simulation was performed with N = 1, 10,
20, ..., 70. The other parameters were determined us-
ing the learning algorithm described in the previous
section. To facilitate visual comparison of the outputs
of the glomeruli layer Vo(x,y) with the measured ac-
tivities VT,o(x,y), both values are binarized; the top
5% of the values are converted to 1, and the others to
0. In addition, for quantitative comparison, the corre-
lation of the glomeruli module activation rate is cal-
culated between the binarized output of the glomeruli
layer and the binarized measured activity. The activa-
tion rateV ′

o,µ in the module µ is defined by the follow-
ing equation:

V ′
o,µ=

SAo,µ
So,µ

(µ∈ a, ..., p,A, ...,M,P) (9)

where SAo,µ denotes the activated area, and So,µ is the
whole area of the module µ.
After implementation of the learning algorithm,

each representative odorant in the learning data set
was input to the model, and the correlation outlined
above was calculated. This procedure was repeated
with different values of Gaussian function number N.
Figure 7 shows the relationship betweenN and the av-
erage correlation over the learning data set. It can be
seen that this correlation rises along with increases in
N until N = 50, then gradually drops. From this re-
sult, N = 50 is determined as the best Gaussian func-
tion number for this learning data set. One of the rea-
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Figure 7: Relationship between glomerular module-based
correlation and the Gaussian unit number.

sons for the decrease in correlation after N = 50 could
be that the activity at the center of the extra Gaussian
units does not obey the assumed relationship shown
in Equation (4) and Figure 5.
Figure 6(b) and (c) show themeasured activity and

output of the glomeruli layer when N = 50, respec-
tively. Comparing the figures shows that the model
successfully reproduce the features seen in the mea-
sured activity. Specifically, the glomeruli layer output
shows the same trend in the shift of activated area.
These results suggest that the proposed learning algo-
rithm can approximate the learning data set.

4.2 Prediction

Using the parameters determined in the learning sim-
ulation, odorants not included in the learning data set
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(c) Results of prediction by the model (N=50)

(b) Binarized  measured activity

(a) Prediction data set adapted from Glomerular

Response Archive (Leon and Johnson, 2009)

Corre- 
lation 0.42 0.470.620.51

Figure 8: Prediction results.

were input to the model. The odorants for predic-
tion are shown in Figure 8 (a). These data were cho-
sen because they are structurally close to those of the
learning data set. The binarized measured activitiy
is shown in Figure 8 (b) and the binarized Glomeruli
layer output is shown in Figure 8 (c). Although the
predicted results are not as precise as the output for
the odorants in the learning data set, this activity, es-
pecially on the lower side, captured the features of
the measured activity. In addition, the shift of the ac-
tivated area from the caudal to the rostral side (left
to right) along with increases in the carbon number
seems to be preserved. These results imply the feasi-
bility of predicting glomerular activity using the pro-
posed model.

5 CONCLUSIONS

In this paper, we proposed an olfactory model aimed
at developing a novel algorithm to relate odorant
molecules to odour qualities. The proposed model
takes odorants as the input, from which glomerular
activity is produced. In the model, odorants are ex-
pressed in graph form, and a graph kernel function is
employed to estimate the response of of receptors to
the odorants. A learning algorithm was also proposed
to set the parameters included in the model. Using

the model and this learning algorithm, we performed
simulation to learn a set of glomerular activities. The
results indicated that the model could approximate
the features of the learning data set. Further, we
performed a prediction simulation using the param-
eters determined by the learning algorithm. Although
the correlation between the output of the model and
the measured activity was not as high as that of the
learned data, it was observed that the features in the
measured activity were captured. This indicates the
feasibility of predicting glomerular activity.
In future work, we aim to improve the prediction

ability of the model to enable the flavor of an odor-
ant to be predicted. To achieve this, we plan to intro-
duce other learning algorithms for feed-forward neu-
ral networks. In addition, the simulation needs to be
performed using a larger data set.
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