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Abstract

The demands for odor processing apparatuses have
been increasing in fragrance or food industries. How-
ever, odors are extremely high dimensional informa-
tion composed a combination from tens thousands of
different odorant molecules, and thus requires vast
amounts of computation. Therefore, it is considered
learning from a living nose would be an efficient ap-
proach. From the odor discrimination experiments, it
was found that mice have a feature extraction abil-
ity called Attention by which they could focus on the
important odorants for odor discrimination. In this
paper we propose a neural network model approxi-
mated to actual number of neurons and the structure
of olfactory system. Simulation experiments of the
proposed model were implemented based on the odor
discrimination experiments on the living mice. From
the simulation results of the model, we confirmed not
only the proposed model had ability of Attention, but
also the tendency of Attention was consistent with the

living mice.

1 Introduction

Recently, the demands for odor processing appara-
tuses have been increasing in fragrance or food indus-
tries. However, odors are extremely high dimensional
information composed a combination from tens thou-
sands of different odorant molecules. Therefore, odor
information requires vast amounts of computation for
Thus far, to
reduce its dimension, the ability of most odor discrimi-
nating apparatuses were specialized for particular odor
such as the electronic nose for banana ripeness devel-
oped by Llobet et al [2]. On the other hand, most
animals discriminate a number of different odors for
survival. Therefore, learning from the olfactory sys-
tem of a living nose would be one of the most efficient

discrimination or feature extraction [1].

and prospective approaches [1, 3].
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Figure 1: The concept of Attention

Our research group has conducted a series of odor
discrimination experiments on mice [4]. First, the mice
are trained to select a rewarded odor composed of
three kinds of odorants [IA, Ci, EB]. Then, they were
required to discriminate the odors that contain a part
of odorant in odor [IA, Ci, EB] such as [IA] or [IA,
EB] etc. As a result, we observed most mice had diffi-
culty to distinguish [TA, EB] from [IA, Ci, EB]. It im-
plies that the mice made attention on a combination
of odorants [TA] and [EB] when they learnt [IA, Ci,
EB] as described in Fig. 10 This mechanism is called
Attention. Because making attention on appropriate
odorants [4] will enable an efficient dimension reduc-
tion or feature extraction, mechanism of Attention is
of importance to process high dimensional odor infor-
mation. So far, Li et al. or Cleland et al. have revealed
several feature extraction mechanism of olfactory sys-
tem, however, mechanism of Attention has yet to be
explored. To reveal how the olfactory system pro-
cess Attention, the signal transduction between neu-
rons must be measured, nevertheless it is beyond cur-
rent technology to collect enough data. In this paper,
we propose a neural network model constructed based
on anatomical insight, and try to elucidate the mech-
anism of Attention through simulation. Further, the
simulation results of the proposed model are compared



with the odor discrimination experiment results of the
living mice.

2 The odor discrimination experi-
ments

This section details the series of odor discrimination
experiment on mice aimed to reveal Attention [4].

2.1 Methods

The subject of the experiment was water-deprived
C57BL/6J mouse. Fig. 2 shows a Y-maze appara-
tus. In Fig. 2(a), E1 and E2 are the end where odors
and water are presented, while S is the end where
the mouse are placed at the beginning of each trial.
Fig. 2(b) shows a water feeder and a hole for odor
emanation located at E1 and E2.

First, odor A and water are presented at either end
E1l or E2 randomly so that the mouse is trained to
select the end where odor A emanates. Such trials are
repeated for 24 times a day until the error rate to drop
below 20 %. Then, the trained mice are required to
discriminate the odor B of which odorants are partly
common with the odor A. The odor B is presented at
the opposite end to the end where odor A and water
are presented. If the mouse were able to discriminate
odor A form odor B, they are supposed to choose the
end where water and odor A is provided.

This series of experiments was implemented on
eight mice. The odor A was a mixture of three kinds of
odorants, Isoamyl Acetate (IA), Citral (Ci) and Ethyl
Butyl (EB), expressed as [IA, Ci, EB] by the abbre-
viation of each odorant. The odor Bs, such as [EB],
[Ci], [TA, EB] etc., were consisted of combinations from
those three odorants.

2.2 Resluts

Fig. 3 shows the averages and standard deviations
of error rates obtained from eight mice. The horizontal
axis shows the odor Bs ([Ci], [EB]O [IA]O [EB, IA]),
and vertical one shows the error rate.

From Fig. 3, we can find the error rates to [IA], [Ci]
or [EB] are about 10 to 15 %, and could be assumed
that the mice were able to discriminate [IA, Ci, EB]
from those odors. To [IA, EB], in contrast, the er-
ror rate is nearly 50 %, which indicates the mice could
not discriminate the odors because they were under an
either-or situation. This result implies that the mice
have made attention on the combination of odorants
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(a) Y-maze

(b) Water-feeder and Odor outlet

Figure 2: Structure of Y-maze and drinking behavior
of mouse (revised from the figure in the literature [4].)
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Figure 3: Results of odor discrimination experi-
ment.(unpublished data)
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[IA] and [EB] when they learnt [IA, Ci, EB], and sub-
sequently they could not find the difference between
[IA, Ci, EB] and [IA, EB] [4]. From the experiment,
it is suggested that the mice would make attention on
a part of odorants contained in an odor. This mecha-
nism is called Attention.

3 A model of olfactory system of mice

A neural network model is proposed based on
anatomical insights [5, 7, 8]. This section describes
the basic structure of olfactory system of mice, the
proposed model, and the learning algorithm.

3.1 Structure of olfactory system of mice

Fig. 4 shows the basic structure of olfactory system
of mice. The olfactory system is composed of three
parts which are receptor neurons, olfactory bulb and
piriform cortex. Receptor neurons that bind to specific
odorants distributes on the surface of nasal, express-
ing only one receptor gene among a thousand different
genes [9]. As the odorant molecules binded, the recep-



—> Excitory connection
— Inhibitory connection

o

to Pyramidal Cells
in Piriform Cortex

= @<
1l 1L From
D: ) O —@ Pyramidal
1 1 Cells
> Q:TL
1L
> Ty o=%
[ ] °
D 1 . .
L]
o
. Mitral Granule
Receptor Cells Glomeruli Cells  Cells

Figure 4: Olfactory system of mice. The activity pat-
tern of glomeruli is cited from literature [10].

tor neurons are activated and send signals to olfactory
bulb. The axons from the receptors that expressing
the same gene terminate at the same point on the sur-
face of olfactory bulb [11]. The terminal of those axons
form a small round cluster called glomeruli. Therefore,
the 2-D map of the glomeruli distribution can be asso-
ciate with the receptor genes as well as the odorants,
and is called odor map [11]. The activity pattern of
glomeruli shown in Fig. 4 is an example of response to
the odorant [IA].

Besides the glomeruli, mitral cell and granule cell
are the principal neurons in the olfactory bulb, which
are in charge of the feature extraction. The glomeruli
are connected to the mitral cells. The mitral cells are
interconnected with excitatory synapse and inhibitory
synapse midiated by the granule cells. The mitral cells
transfer the signal to the pyramidal cells in the piri-
form cortex. The pyramidal cells send signal back to
the granule cells in olfactory bulb and indirectly in-
hibit the mitral cells. The piriform cortex is divided
into anterior and posterior, although division of their
role is rather unclear. Generally, the piriform cortex is
believed to be in charge of the identification of odors.

3.2 A model of olfactory system of mice

The schematic diagram of the proposed model is
shown in Fig. 5. Olfactory bulb is consisted of the
Glomeruler layerOthe Mitral layerOand the Granule
layer. The APC layer and the PPC' layer correspond
to anterior piriform cortex and posterior piriform cor-
tex, respectively. The number of neurons in each layer
of olfactory bulb are 1805 respectively, while 1000 for
the APC layer and 100 for the PPC layer. Except
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Figure 5: A model of the olfactory system in mouse.

the PPC layer is consisted of liner neuron models, all
layers are consisted of sigmoidal neuron models.

The output U;(t) of 44, sigmoidal neuron model or
liner neuron model at the time step ¢ is given by the
following equation:

O (Sigmoidal neuron)

1
Uz(t): { 1+exp{—e;(u;(t)—0;)} (1)

au;(t) O (Liner neuron)
where ¢; is the gradient of sigmoid function, 8; is the
threshold value, and a is a constant gain value. The
internal states wu;(t) of the neuron model is given by
the following equation:

’U,Z(t) = —aui(t - ].) + O'jWi'(t)Uj(t) (2)

where « is the time constant, U;(t) is the output of jn
neuron model that is connected to iy, neuron model,
and W;;(t) is the connective weight between iy, and
Jtn neuron models. The connections between the neu-
ron models in each layer are prepared based on the
structure of olfactory system described in Section 3.1.

It is suggested that the interconnections in piriform
cortex have a role of pattern complement from retro-
graded input patterns [7, 12, 6]. For simplification,
assuming no noise from input, the interconnections in
piriform cortex are neglected in this paper. Further,
it is suggested through a simulation by Cleland et al.
[6] that the interconnections in olfactory blub plays
an role to normalize the amount of activity within
glomeruli. In this paper, since we utilize the glomeruli
activity patterns provided by Johnson et al. [10] that
are normalized to the normal distribution, the inter-
connections in the olfactory bulb are assumed to be
able to neglected.

The upper side of Fig. 6 shows the activity patterns
of glomeruli to monomolecular odorants that are nor-
malized to normal distribution provided by Johnson
et al. [10]. The activity patterns are divided into 1805
lattices, and the activity of each lattice is inputted
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Figure 6: Activity patterns of Glomeruler layer.

to the corresponding neuron model in the Glomeruler
layer. The internal state of the iy, neuron model in the
Glomeruler layer is given by the following equation:

ui(t) = 19 3)

where O is the set whose elements are the odorants
that consist the inputted odor, and [¥ is the activity
of iy, lattice to the odorant set O. If only one odor-
ant consists the odorant set O, then the corresponding
monomolecular activity pattern directly becomes the
input to Glemeruler layer. Otherwise, for odorant
mixture, the activity pattern is given by the following
equation where the activity patterns for component
odorants are combined as described in Fig 6:

19 = max [¥ (4)
z€0
where [? is the activity of ¢, latice to monomolecular
odorant z.

3.3 The learning algorithm

Most computational functions of the olfactory sys-
tem have not been revealed clearly. In this paper, the
modulation of synapse plasticity or the signal trans-
duction between the neurons are hypothesized based
on related studies [14] and the experimental results of
odor discrimination on the mice [4] described in Sec-
tion 2. Considering the experiment required the mice
to discriminate an rewarded odor A and unrewarded
odor B, the learning algorithm for the proposed model
consists of the following three phases.

In the 1st phase, the connective weights W4 (t)
from the Mitral layer to the APC layer are modu-
lated to learn the relationship between the inputted

©CISAROB 2008 540

ama i
Wit ={

The Thirteenth International Symposium on Artificial Life and Robotics 2008(AROB 13th " 08),
B-Con Plaza, Beppu, Oita, Japan, January 31-February 2, 2008

odors and the reward. The output of each neuron
model in the Mitral layer for odor A is assumed to
be M, while for odor B MP. In addition, consid-
ering the odors are identified in the APC layer, the
output which indicates the rewarded odor is set to be
A#, while for unrewarded odor AP. To covert the in-
put patterns MiA and MiB to Af and Af’ respectively,

W)A(t) is modulated by the following equation:

A(t) + Bma M (t)A2(t) (OdorA)
(t) + BmaMB(t)Af(t) (OdorB)

(5)

where a,,, is the forgetting term and f,,, the learning
rate.

The 2nd phase is to calculate the difference be-
tween odor A and odor B by modulation of connective
weights W9 (t) from the APC layer to the Granule
layer.

QagWHC (1) + BagMA(t)AJ (t) (OdorA)
WZ’;G (t) + BagMP (t) A2 (t) (OdorB)

(6)

In the same way as equation (5), o,y is the forget-
ting term, and f3,, the learning rate. When odor A
is inputted, the outputs of the APC' layer A;-‘ are
converted to the outputs of the Granule layer MP
through W;}<. Similarly, when odor B is inputted, the
outputs of the APC' layer Af’ are converted to the out-
puts of the Granule layer M/* through W<. Then,
the outputs of the Granule layer inhibits the neuron
models in the Mitral layers through WgM = —0;;.
Consequently, the neuron models in Mitral layer out-
put a activity pattern either M#A — MP or MP — MA
which represents the difference between two odors.
The 3rd phase extracts the most effective neurons
for discrimination. After learning phase 2, it is consid-
ered that the neuron models of the Mitral layer with
the strongest outputs could emphasize the difference
between odor A an odor B. In the proposed model,
we assume the connective weights between the Mitral
layer and the PPC' layer form a competitive system,
and the corresponding connective weights are deter-
mined according to the competitive system proposed
by Amari et al. [14]; these connective weights include
self-feedback connective weights WM in the Mitral
layer, feedforward connective Welghts Wg[ P from the
Mitral layer to the PPC' layer, and the feedback con-
nective weights from the PPC' layer to the Granule
layer. The competitive system extracts a neuron hav-
ing the greatest ouput within a certain neuron group in
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the Mitral layer. In the proposed model, the neurons
in the Mitral are randomly divided into 100 groups.
Consequently, after the 3rd learning phase, at most
100 neurons should be extracted.

Finally, it is expected that the proposed model
could extract the information that expresses the dif-
ference between odors, and have importance for odor
discrimination.

4 Simulation

In this section, the computer simulations with the
proposed model are described. The simulation condi-
tion was determined according to the odor discrimi-
nation experiment of the living mice. Then, the com-
puter simulation results are compared to that of the
living mice described in Section 2.

4.1 Learning of the reward odor

Following the odor discrimination experiment of the
living mice, odor[IA, Ci, EB] and [Air] are inputted
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to the proposed model alternatively, and the connec-
tive weights are adjusted following the learning algo-
rithm described in Section 3.3. The initial values of
the connective weights are determined by uniform ran-
dom values.

Fig. 7(a), (b) shows the outputs of the Glomeruler
layer when odor [IA, EB, Ci] and odor [Air] are in-
putted respectively. In this simulation, we assumed
the output of odor [Air] for the Glomeruler layer to
be a constant noise. Fig. 7(c) shows the outputs of
the Mitral layer when odor [IA, EB, Ci] is inputted
at the time step ¢. The activity distribution of the
neuron models corresponds to the color bar where red
denotes higher activity.

Fig. 7(c) indicates that the activity pattern of the
Mitral layer is an enhanced pattern of the Glomeruler
layer shown in Fig. 7(a) at the initial state (¢ = 0).
After the 1st and 2nd learning phase have completed
(t = 10), the activity pattern of the Mitral layer re-
flects the difference of the patterns shown in Fig. 7(a)
and Fig. 7(b). Finally, when the 3rd learning phase has
completed (¢ = 15), the neurons of the Mitral layer
with the strongest outputs at ¢ = 10 are extracted as
a result of competition (shown in Fig. 7(c)). Conse-
quently, the activated region becomes narrowed but
the activity has gained stronger through the proposed
learning algorithm. Because a part of the inputted
pattern on the Glomeruler layer has extracted by the
Mitral layer, it could be concluded that the proposed
model has an ability of feature extraction.

4.2 Comparison with the behavior exper-
iments on mice

To compare the tendency in the feature extraction
of simulations and the Attention behavior of the liv-
ing mice, the simulation results are compared to that
of odor discrimination experiments on mice. First, the
similar simulation as Subsection 4.1 have implemented
on 6 different odors [IA], [EB], [Ci], [IA, EB], [IA, Cij]
and [Ci, EB]. The outputs of the Glomeruler layer
to each odor are shown on the lower side of Fig. 8.
The outputs of the Mitral layer after the 3rd learning
phase are shown in the middle of Fig. 8. In addition,
the overlap rates of each activity pattern of the Mitral
layer to that of odor [TA,Ci,EB] are plotted on the top
of Fig. 8. The overlap rate is defined as the ratio of
the region that both patterns are activated in com-
mon against to the total activated region. Further,
the error rates obtained from the odor discrimination
experiments on the living mice are plotted beside the
overlap rates. From Fig. 8, we can find similar ten-
dency between the error rates and the overlap rates;
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the higher overlap rate is, the higher the error rate.
This result indicates the feature extraction by the pro-
posed learning algorithm is consistent with Attention

to an extent.

However, in the case of odor [Ci, EB] and [IA, Ci],
the overlap rate differs significantly as compared to the
error rates of the living mice. This could be caused by
the initial values of the connective weights. Therefore,
the simulation result might be able to be improved by
taking the average of simulation results over various

initial values of the connective weights.

5 Conclusion

In this paper, we proposed a neural network model
of olfactory system of mice aimed to explore the al-
gorithm called Attention. The simulation results of
the proposed model have a certain consistency with
that of the odor discrimination experiments on mice,
which indicates that the model has ability similar to

Attention.

Having the mice to discriminate the same odors re-
peatedly, we found the mice could lower the error rate
and improve their discrimination ability with chang-
ing the tendecy of Attention. For the future work, we
are planning to investigate the underlying algorithm
of the experiment results and improve the proposed

model.
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