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Abstract— Impedance control is one of the most effective
methods for controlling the interaction between a robotic manip-
ulator and its environments. This method can regulate dynamic
properties of the manipulator’s end-effector by the mechanical
impedance parameters and the desired trajectory. In general,
however, it would be difficult to determine them that must be
designed according to tasks. In this paper, we propose a new
on-line learning method using neural networks to regulate robot
impedance while identifying characteristics of task environments
by means of four kinds of neural networks: three for the position,
velocity and force control of the end-effector; and one for the
identification of environments. The validity of the proposed
method is demonstrated via a set of computer simulations of
a contact task by a multi-joint robotic manipulator.

I. INTRODUCTION

When a manipulator performs a task in contact with its en-
vironment, the position and force control are required because
of constraints imposed by the environmental conditions. For
such contact tasks of the manipulator, the impedance control
method [1] is one of the most effective methods for controlling
a manipulator in contact with its environments. This method
can realize the desired dynamic properties of the end-effector
by the appropriate impedance parameters with the desired
trajectory. In general, however, it would be difficult to design
them according to tasks and its environments including non-
linear or time-varying factors.

There have been many studies by means of the optimization
technique with an objective function depending on tasks.
Those methods can adapt the desired trajectory of the end-
effector according to the task, but there still remains to be
accounted for how to design the desired impedance parame-
ters. Besides, the methods cannot be applied into the contact
task where the characteristics of its environment are nonlinear
or unknown. For this problem, some methods using neural
networks (NNs) have been proposed, which can regulate robot
impedance properties through the learning of NNs in consider-
ation of the model uncertainties of manipulator dynamics and
its environments. Most of such methods using NNs assume
that the desired impedance parameters are given in advance,
while several methods try to obtain the desired impedance of
the end-effector by regulating the impedance parameters as
well as the reference trajectory of the end-effector according
to tasks and environmental conditions. However, there does
not exist an effective method to regulate impedance parameters

that can be applied to the case where environmental conditions
are changed during task execution.

In this paper, a new on-line learning method using NNs
is proposed to regulate all impedance parameters as well
as the desired trajectory at the same time. This paper is
organized as follows: Section II describes related works on
the impedance control method. Then, the proposed learning
method using NNs is explained in Sections III and IV. Finally,
effectiveness of the proposed method is verified through a
set of computer simulations for the given task including the
transitions from free to contact movements and the modeling
error of environments.

II. RELATED WORKS

Asada [2] showed that the nonlinear viscosity of the end-
effector could be realized by using a NN model as a force
feedback controller. Cohen and Flash [3] proposed a method
to regulate the stiffness and viscosity of the end-effector.
Also, Yang and Asada [4] proposed a progressive learning
method that can obtain the desired impedance parameters by
modifying the desired velocity trajectory. Then, Tsuji et al. [5],
[6] proposed the iterative learning methods using NNs that
can regulate all impedance parameters and the desired end-
point trajectory at the same time. Their method can realize
smooth transitions of the end-effector from free to contact
movements. Venkataraman et al. [7] then developed an on-
line learning method using NN for compliant control of space
robots according to the given target trajectory of the end-
effector through identifying unknown environments with a
nonlinear viscoelastic model.

The previous methods [2], [3], [7] cannot deal with a contact
task including free movements, while the methods [4], [5], [6]
can be applied to only cyclical tasks in which environmental
conditions are constant because the learning is conducted in
off-line. Considering to make a robot to perform realistic tasks
in a general environment, the present paper develops a new
method that the robot can cope with an unknown task by
regulating the control properties of its movements according to
changes of environmental circumstances including non-linear
and uncertain factors in real-time.
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III. IMPEDANCE CONTROL

In general, a motion equation of an m-joint manipulator in
the l-dimensional task space can be expressed as

M(θ)θ̈ + h(θ, θ̇) = τ + JT (θ)Fc, (1)

where θ ∈ �m denotes the joint angle vector; M(θ) ∈ �m×m

the non-singular inertia matrix; h(θ, θ̇) ∈ �m the nonlinear
term including the joint torque due to the centrifugal, Colioris,
gravity and friction forces; τ ∈ �m the joint torque vector;
J ∈ �l×m the Jacobian matrix; and Fc ∈ �l is the external
force exerted on the end-effector of the manipulator from
the environment in contact movements. The external force Fc

can be expressed with an environment model including time-
varying and nonlinear factors as

Fc = g
(
dXo, dẊo, dẌo, t

)
, (2)

where dXo = Xe
o − X represents the displacement vector

between the end-effector position X and the equilibrium
position on the environment Xe

o ; and g(∗) is a nonlinear and
unknown function.

The desired impedance property of the end-effector can be
given by

MedẌ + BedẊ + KedX = Fd − Fc, (3)

where Me, Be, Ke ∈ �l×l are the desired inertia, viscosity
and stiffness matrices of the end-effector, respectively; dX =
X − Xd ∈ �l is the displacement vector between X and the
desired position of the end-effector Xd; and Fd ∈ �l denotes
the desired end-point force vector.

Applying the nonlinear compensation technique with

τ =
{

M̂−1(θ)JT Mx(θ)J
}T

ĥ(θ, θ̇)

−JT (θ)Fc + JT Mx(θ)(Fact − J̇ θ̇) (4)

to the nonlinear equation of motion given in (1), the following
linear dynamics in the operational task space can be derived
as

Ẍ = Fact, (5)

where M̂(θ) and ĥ(θ, θ̇) are the estimated values of M and
h(θ, θ̇), respectively; Mx(θ) = (JM̂−1(θ)JT)−1 ∈ �l×l

denotes a non-singular matrix as far as the arm is not in a
singular posture; and Fact ∈ �l denotes the force control
vector represented in the operational task space.

From (3) and (5), the following impedance control law can
be designed [5], [6] as

Fact = Ft + Ff + Ẍd, (6)

Ft = M−1
e BedẊ + M−1

e KedX, (7)

Ff = −M−1
e (Fd − Fc). (8)

Figure 1 shows the block diagram of the impedance control
in the operational task space. Note that the force control loop
does not exist during free movements because of Fd = Fc = 0,
while the position and velocity control loop as well as the force
one work simultaneously during contact movements. Using the
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Fig. 1. Impedance control system represented in the operational space

above impedance controller for robotic manipulators, dynamic
properties of the end-effector can be regulated by changing
the impedance parameters. However, it is so much tough to
design the appropriate impedance and the desired trajectory
of the end-effector according to given tasks and unknown
environmental conditions.

IV. ON-LINE LEARNING OF END-EFFECTOR IMPEDANCE

USING NNS

A. Structure of Control System

The proposed control system contains four NNs; three NNs
for regulating impedance parameters of the end-effector, and
one NN for identifying a task environment. Fig. 2 shows the
structure of the proposed impedance control system including
three multi-layered NNs: Position Control Network (PCN)
for controlling the end-effector position, Velocity Control
Network (VCN) for controlling the end-effector velocity, and
Force Control Network (FCN) for controlling the end-effector
force. The inputs to these NNs include X and dX , and in
addition to the end-point force Fc to the FCN. When the
learning of the NNs is completed, it can be expected to obtain
the optimal impedance parameters M−1

e Be by PCN, M−1
e Ke

by VCN, and M−1
e by FCN, which correspond to the gain

matrices of the designed controller in (6), (7), (8).
The linear function is utilized in the input units of NNs, and

the sigmoidal function σi(x) is used in the hidden and output
units given by

σi(x) = aitanh(x), (9)

where ai denotes a positive constant. The output of NNs are
represented by the following vectors:

Op =
(
oT

p1, o
T
p2, · · · , oT

pl

)T ∈ �l2 , (10)

Ov =
(
oT

v1, o
T
v2, · · · , oT

vl

)T ∈ �l2 , (11)

Of =
(
oT

f1, o
T
f2, · · · , oT

fl

)T ∈ �l2 , (12)

where opi, ovi and ofi ∈ �l are the vectors that consist of the
output values of the PCN, VCN, and FCN. It should be noted
that the maximum output value of each NN can be regulated
by the parameter ai in (9).

Learning of the NNs is progressed as follows: First, the PCN
and VCN are trained by the iterative learning to improve the
tracking control ability of the end-effector to follow the desired
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trajectory during free movements. The FCN is then trained
under the PCN and VCN are fixed during contact movements,
where the desired trajectory Xd is also regulated to reduce
errors of the end-point force as small as possible.

B. Learning During Free Movements

Figure 3 shows the detailed structure of the tracking control
part using PCN and VCN in the proposed impedance control
system. The force control input Fact during free movements
is defined by

Fact = Ft + Ẍd = Fp + Fv + Ẍd

=




oT
p1

oT
p2

· · ·
oT

pl


 dX +




oT
v1

oT
v2

· · ·
oT

vl


 dẊ + Ẍd, (13)

where Fp, Fv ∈ �l are the control vectors computed with the
output of PCN and VCN, respectively.

The energy function for the learning of PCN and VCN is
given by

Et(t) =
1
2
dX(t)T dX(t) +

1
2
dẊ(t)T dẊ(t). (14)

The synaptic weights in the PCN, w
(p)
ij , and the VCN, w

(v)
ij ,

are modified in the direction of the gradient descent reducing
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Fig. 4. Identification of the environment using EIN

Et as

∆w
(p)
ij (t) = −ηp

∂Et(t)

∂w
(p)
ij (t)

, (15)

∆w
(v)
ij (t) = −ηv

∂Et(t)

∂w
(v)
ij (t)

, (16)

∂Et(t)

∂w
(p)
ij (t)

=
∂Et(t)
∂X(t)

∂X(t)
∂Fp(t)

∂Fp(t)
∂Op(t)

∂Op(t)

∂w
(p)
ij (t)

, (17)

∂Et(t)

∂w
(v)
ij (t)

=
∂Et(t)
∂Ẋ(t)

∂Ẋ(t)
∂Fv(t)

∂Fv(t)
∂Ov(t)

∂Ov(t)

∂w
(v)
ij (t)

, (18)

where ηp and ηv are the learning rates for PCN and VCN, re-
spectively. The partial differential computations ∂Et(t)

∂X(t) , ∂Et(t)

∂Ẋ(t)
,

∂Fp(t)
∂Op(t) , and ∂Fv(t)

∂Ov(t) can be derived by (13) and (14), while
∂Op(t)

∂w
(p)
ij

(t)
and ∂Ov(t)

∂w
(v)
ij

(t)
can be obtained by the error back

propagation method [8]. However, ∂X(t)
∂Fp(t) and ∂Ẋ(t)

∂Fv(t) cannot
be computed directly because of dynamics of the manipulator.
To deal with such computational problems, ∂X(t)

∂Fp(t) and ∂Ẋ(t)
∂Fv(t)

are approximated by the finite variations [9] as follows:

∂X(t)
∂Fp(t)

≈ ∆t2sI, (19)

∂Ẋ(t)
∂Fv(t)

≈ ∆tsI, (20)

where ∆ts is the sampling interval, and I is the l dimensional
unit matrix.

When the learning is finished, the trained PCN and VCN
may express the optimal impedance parameters M−1

e Ke and
M−1

e Be as the output values of the networks Op(t) and Ov(t),
respectively.

C. Identification of Environments by NN

In the proposed learning method for contact movements,
the FCN is trained by using the estimated positional error of
the end-effector from the force error information without any
positional information on the environment. Consequently, it
needs to identify an environment model F̂c to generate the
inputs to the FCN:

F̂c = ĝ
(
dXo, dẊo, dẌo, t

)
. (21)



In some target tasks, the environment model for the manip-
ulator can be expressed with the following linear and time-
invariant model as:

Fcm = gm

(
dXo, dẊo, dẌo

)
= KcdXo + BcdẊo + McdẌo, (22)

where Kc, Bc, and Mc∈ �l×l denote the stiffness, viscosity,
and inertia matrices of the environment model, respectively.
However, it is much likely that there may exist some modeling
errors between the real environment g in (2) and the defined
environment model gm. In the proposed control system, such
modeling errors on the environment is dealt with the Environ-
ment Identification Network (EIN) which is put in parallel
with the environment model gm as shown in Fig. 4. The
inputs to the EIN is the end-point force, position, velocity, and
acceleration, while the output is the force compensation Fcn

for the force error caused by the modeling errors. Accordingly,
the end-point force F̂c is estimated as follows:

F̂c = Fcm + Fcn. (23)

The energy function for the learning of EIN is defined as

Ee(t) =
1
2

{
F̂c(t) − Fc(t)

}T {
F̂c(t) − Fc(t)

}
. (24)

The synaptic weights in the EIN, w
(e)
ij , are modified in the

direction of the gradient descent reducing Ee as follows:

∆w
(e)
ij (t) = −ηe

∂Ee(t)

∂w
(e)
ij (t)

, (25)

∂Ee(t)

∂w
(e)
ij (t)

=
∂Ee(t)
∂F̂c(t)

∂F̂c(t)
∂Fcn(t)

∂Fcn(t)

∂w
(e)
ij (t)

, (26)

where ηe is the learning rate for the EIN. The terms ∂Ee(t)

∂F̂c(t)

and ∂F̂c(t)
∂Fcn(t) can be computed by (23) and (24), while ∂Fcn(t)

∂w
(e)
ij

by the error back propagation learning.
The condition F̂c = Fc should be established at minimizing

the energy function Ee(t) by the EIN, so that F̂c can be
utilized for the learning of contact movements even if the exact
environment model is unknown.

D. Learning During Contact Movements

The FCN is trained to realize the desired end-point force
Fd by utilizing the estimated end-point force F̂c. Note that the
synaptic weights of the PCN and VCN are fixed during the
FCN learning, and no positional information on the environ-
ment is given to the manipulator.

The learning in this stage is performed by exchanging the
force control input Fact given in (13) with

Fact = Ft + Ff + Ẍd

= Ft −




oT
f1

oT
f2

· · ·
oT

fl


 (Fd − Fc) + Ẍd. (27)

The energy function for the FCN learning is defined as

Ef (t) =
1
2
{Fd(t) − Fc(t)}T {Fd(t) − Fc(t)} . (28)

The synaptic weights in the FCN, w
(f)
ij , are modified in the

direction of the gradient descent reducing Ef as follows:

∆w
(f)
ij (t) = −ηf

∂Ef (t)

∂w
(f)
ij (t)

, (29)

∂Ef (t)

∂w
(f)
ij (t)

=
∂Ef (t)
∂Fc(t)

{
∂Fc(t)
∂X(t)

∂X(t)
∂Ff (t)

+
∂Fc(t)
∂Ẋ(t)

∂Ẋ(t)
∂Ff (t)

+
∂Fc(t)
∂Ẍ(t)

∂Ẍ(t)
∂Ff (t)

}
∂Ff (t)
∂Of (t)

∂Of (t)

∂w
(f)
ij (t)

, (30)

where ηf is the learning rate for the FCN. The terms ∂Ef (t)
∂Fc(t)

and ∂Ff (t)
∂Of (t) can be computed by (27) and (28), and ∂Of (t)

∂w
(f)
ij

(t)
by

the error back propagation learning. Moreover, ∂X(t)
∂Ff (t) , ∂Ẋ(t)

∂Ff (t) ,

and ∂Ẍ(t)
∂Ff (t) can be approximated as ∂X(t)

∂Ff (t) ≈ ∆t2sI , ∂Ẋ(t)
∂Ff (t) ≈

∆tsI , and ∂Ẍ(t)
∂Ff (t) = I , respectively, in the similar way to the

learning rules for free movements. On the other hand, ∂Fc(t)
∂X(t) ,

∂Fc(t)

∂Ẋ(t)
and ∂Fc(t)

∂Ẍ(t)
are computed by using the estimated end-

point force F̂c in order to concern dynamic characteristics of
the environment during contact movements. When the EIN is
trained enough to realize F̂c = Fc, those partial differential
computations can be carried out with (22) and (23).

On the other hand, the desired trajectory, as well as the
impedance parameters, is regulated to reduce learning burdens
of the FCN as small as possible. The modification of the
desired trajectory ∆Xd(t) is executed by

∆Xd(t) = −ηd
∂Ef (t)
∂Xd(t)

, (31)

∂Ef (t)
∂Xd(t)

=
∂Ef (t)
∂F̂c(t)

∂F̂c(t)
∂X(t)

∂X(t)
∂Ff (t)

∂Ff (t)
∂Xd(t)

, (32)

where ηd is the rate of modification. The desired velocity
trajectory is also regulated in the same way. At minimizing
the force error of the end-point with the designed learning
rule, the FCN may express the optimal impedance parameter
M−1

e as the output value of the network Of (t).
The designed learning rules during contact movements can

be utilized under that the EIN has been trained enough to
F̂c ≈ Fc. However, there is the possibility that the estimated
error of F̂c would be much increased because of the unex-
pected changes of the environment or the learning error of the
EIN. Therefore, the learning rates ηf and ηd during contact
movements are defined with the time-varying functions of
Ee(t) given in (24) as follows:

ηf (t) =
ηMAX

f

1 + pEe(t)
, (33)

ηd(t) =
ηMAX

d

1 + pEe(t)
, (34)



where ηMAX
f and ηMAX

d are the maximum values of ηf (t)
and ηd(t), respectively; and p is a positive constant. It can
be expected that the learning rates defined here become small
automatically to avoid the wrong learning when the learning
error Ee(t) is large.

V. COMPUTER SIMULATIONS

A series of computer simulations is performed with a four-
joint planar manipulator to verify the effectiveness of the
proposed method, in which the length of each link of the
manipulator is 0.2 [m], the mass 1.57 [kg] and the moment
of inertia 0.8 [kgm2]. The given task for the manipulator is a
circular motion of the end-effector including free movements
and contact movements as shown in Fig. 5, in which the
end-effector rotates counterclockwise in 8 [s] and its desired
trajectory is generated by using the fifth-order polynomial with
respect to the time t. The impedance control law used in this
paper is designed by means of the multi-point impedance
control method for a redundant manipulator [10], and the
sampling interval of dynamics computations was set at ∆ts
= 0.001 [s].

The PCN and VCN used in the simulations were of four
layered networks with eight input units, two hidden layers
with twenty units and four output units. The initial values
of synaptic weights were randomly generated under |w(p)

ij |,
|w(v)

ij | < 0.01, and the learning rates were set at ηp = 13000, ηv

= 15. The parameter ai in (9) was determined so that the output
of NNs was limited to -100 ∼ 100. The structures of FCN and
EIN were settled as four layered networks with ten and eight
input units, respectively, two hidden layers with twenty units,
and four output units. The parameters for the learning of the
NNs were set as ηMAX

f = 0.0001, ηMAX
d = 0.01, p = 10,

ηe = 0.001, and the desired end-point force at Fd = (0, 5)T

[N].
In the computer simulation, the estimated environment

model under x < −0.1 [m] was the same as the task
environment gm in (22) with Kc = diag.(0, 10000) [N/m],
Bc = diag.(0, 20) [Ns/m], Mc = diag.(0, 0.1) [kg], but
otherwise the following nonlinear characteristics was assumed
as modeling errors:

Fcy = Kcydy2
o + Bcydẏ2

o + Mcydÿo, (35)

where Fcy is the normal force from the environment to the
end-effector; and the tangential force Fcx = 0. Simulations
were conducted under Kcy = 1000000 [N/m2], Bcy = 2000
[Ns/m2], and Mcy = 0.1 [kg].

Figure 6 shows the changes of arm postures and end-point
forces Fc of the manipulator in the process of learning during
contact movements after the learning of free movements. A
large interaction force is observed until the learning of the
FCN is enough progressed, because the manipulator tries to
follow the initial desired trajectory with the trained PCN and
VCN for free movements. Then, the end-point force converges
to the desired one (5 [N]) through regulating the FCN and the
desired trajectory of the end-effector at the same time as shown
in Figs. 7, 8, where (i, j) in Fig. 7 represents the element of
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M−1
e . It can be found that the manipulator can generate the

desired end-point force just after contacts with the environment
when the learning on contact movements was completed (at
the 10-th trial). However, the force error still remains only in a
moment when the characteristics of the environment changes
discontinuously, because the estimated environment model by
the trained EIN includes some identification errors.
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VI. CONCLUSIONS

In this paper, a new learning method using NNs has been
proposed to regulate impedance properties of robotic manipu-
lators in real time according to task environmental conditions.
The method can regulate all impedance parameters as well as
the desired trajectory of the end-effector while identifying the
environment model, even if the manipulator contacts with the
unknown environment including nonlinear characteristics.

Future research will be directed to analyze the stability
and convergence of the proposed control system during the
learning, and to develop more appropriate structure of NNs
for improving learning efficiency.
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