
An EMG-Controlled Omnidirectional Pointing Device
Using a HMM-based Neural Network

Osamu Fukuda1, Jun Arita2 and Toshio Tsuji2

1National Institute of Advanced Industrial Science and Technology,
Tsukuba, Japan, fukuda.o@aist.go.jp

2Hiroshima University, Higashi-hiroshima, Japan

Abstract

This paper proposes a new EMG-controlled pointing
device using a novel statistical neural network. This
device can be used as an interface tool for wearable
computers since it does not restrict the operator to
being in front of computer devices such as a keyboard
or a mouse.

The distinctive feature of this device is that we adopt
a statistical neural network, which includes a con-
tinuous density hidden Markov model, to model the
relationship between EMG signals and directions of a
pointer movement. The operator can move a pointer
in any direction throughout 360 degrees. We also
introduced a physical model, such as a mass in a
viscous space, into our system to realize a smooth
pointer movement corresponding to the operator’s
force sense. In the experiments, omnidirectional
pointer control is achieved using the proposed method
and the applicability of our method is confirmed.

1 INTRODUCTION

The quantity of information dealt with by human op-
erators is rapidly increasing with the development of
information technology. A new interaction channel is
required to realize advanced man-machine communi-
cations with the development of various new devices
such as wearable computers, and mobile devices. As
new interface channels, we should adopt not only ex-
ternal expressions such as voices and gestures, but
also internal physiological information from human
bodies. Also, we should consider that the disabled
need new interface devices. Since it is very di cult
for the disabled, especially amputees, to use current
interface devices, the development of new interface
devices is expected. If the amputee can use personal
computers and Internet technologies using the new
interface devices, these devices will play important
roles in providing various information and improv-
ing their quality of life (QOL).

Bioelectric signals such as EEG signals and EMG
signals can be expected to be used as new interface
channels. These signals include various important
information that cannot be observed from outside
human bodies. For example, EEG signals include
information concerning intention, awaking and men-
tal stress, and EMG signals include information con-
cerning muscle force, intended motion and muscle
impedance. If the hidden information are estimated
accurately, these signals will be useful as new inter-
action channels. They are especially important for
seriously handicapped people as they may represent
their only hope in restoring the intended functions.

Up to the present, several methods for the EEG and
EMG pattern discrimination using neural networks
have been proposed [ ]-[6]. In the first stage of this
study, Kelly et al. [ ] proposed a pattern discrimi-
nation method combining the back propagation neu-
ral network (BPN) and the Hopfield neural network.
However, BPN cannot realize high learning and dis-
crimination performance because the EMG patterns
di er considerably at the start and end of the mo-
tion even if they are within the same class. While
the BPN was utilized in most of the previous stud-
ies, the authors [3], [4] proposed a statistical neu-
ral network called Log-Linearized Gaussian Mixture
Network (LLGMN) based on a log-linear model and
a Gaussian mixture model, and realized higher dis-
crimination performance than that of other neural
networks. Also, an EMG-controlled pointing device
was proposed using LLGMN, and the performance
of this method was reported [5], [6]. This method
can control the pointer in an arbitrary direction, but
accuracy of the estimated direction was not so high.
Tsuji et al. [7] has therefore proposed Recurrent Log-
Linearized Gaussian Mixture Network (R-LLGMN)
based on a continuous density hidden Markov model
(CDHMM) [8]. This network uses recurrent connec-
tions added to the units of LLGMN in order to dis-
criminate a time sequence of the signals with high
accuracy.
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This paper proposes a new EMG-controlled omni-
directional pointing device using R-LLGMN. In the
proposed pointing device, an arbitrary direction of
pointer movement is represented using a combination
of finite base directions. The probability of pointer
movements in each base direction can be estimated
by R-LLGMN using probability theory.

2 RELATED WORKS

Research on a human-computer interface using EMG
signals and EEG signals has been conducted. For ex-
ample, Rosenberg [9] used EMG signals as an inter-
face for wearable computers and investigated point-
ing in a two-dimensional display. This research, how-
ever, used the conventional BPN and enables only
4% of performance compared with performance of
a conventional computer mouse based on Fitts’s law
[ 0]. Barreto et al. [ ] developed a computer in-
terface using EMG signals and EEG signals in order
to support the disabled. In this research, they re-
alized four-directional pointing and click operations
using EMG signals measured from facial muscles and
using the frequency information of the EEG signals.
Wolpaw et al. [ 2], Roberts et al. [ 3], and Mason
et al. [ 4] reported pointing operation using only
the EEG signals. Robert et al. discriminated two
commands from ch EEG signals. Mason et al. con-
trolled switches depending on EEG features. How-
ever, the systems in these studies were unable to
adapt to the operator’s characteristics caused by the
disabled part, fatigue, aging, and so on, so that it
is very di cult to employ them in practical applica-
tions.

Control performance is the most important problem
for developing interface devices. In most previous re-
search, the multiple degree of freedom (DOF) control
problem corresponds to the discrimination problem
of EMG patterns, so that the DOF is limited to the
class number in pattern recognition. In such a case,
we must define the number of the possible directions
(e.g, up, down, right, left) beforehand to discrimi-
nate pointer movement directions. In addition, the
increasing number of defined movements will require
the learning and discrimination of an enormous num-
ber of patterns. If we use the BPN to learn these pat-
terns, a very large number of learning iterations will
be required or local minima problems may arise. We
should design a new strategy for EMG pattern dis-
crimination to develop new omnidirectional pointing
devices.

3 SYSTEM COMPONENTS

Realizing the proposed pointer control requires the
following techniques.

. Since the EMG signals include high-frequency
components, we must perform adequate signal
processing such as rectifying, filtering, and nor-
malizing to extract meaningful information for
the human interface.

2. Adaptation learning ability and high discrimina-
tion performance are needed to adapt the sys-
tem to the operator’s characteristics such as con-
trol ability and accuracy and to estimate the op-
erator’s intended direction of the pointer move-
ment with high accuracy.

3. To realize smooth movement of a pointer corre-
sponding to the operator’s force sense, the sys-
tem should incorporate a control method based
on a physical model, such as a mass in a viscous
space.

The structure of the proposed system, which incor-
porates the three points above, is shown in Fig. .
This system consists of the EMG signal processor,
the neural network, and the pointer controller. De-
tails of each part are explained in the following sub-
sections.

3.1 EMG Signal Processor

The EMG signal processor extracts features for
pointer control from the EMG signals. First, the
EMG signals which are measured from (L+ ) pairs of
electrodes (Web5000: NIHON KOHDEN Corp.) are
amplified and digitized by an A/D converter. Then,
they are rectified and filtered out through the second
order Butterworth filter (cut-o frequency: [Hz]),
and re-sampled with a 00[Hz] sampling frequency.
L sets of the EMGi(t) measured from the channels,
except for the (L+ )-th channel, are utilized to rep-
resent the direction and velocity of the pointer move-
ment. In order to estimate the direction of pointer
movement, EMG i(t) are normalized to make the sum
of L channels equal to by the following definition:

xi(t) =
EMGi(t) EMG

st

i

LX
i0=1

(EMGi0(t) EMG
st

i0 )

, ( )

where EMGi
st
is the mean value of EMG i(t) while

relaxing the muscle. This is necessary to extend the
EMG pattern independent of the amplitude of the
EMG signals that are highly depending on the force
level. xi(t) is an element of the feature vector x(t) =
[x1(t), x2(t), · · · , xL(t)]T <L. This vector indicates
the cooperation pattern among several muscles and
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Figure 1: Structure of the proposed system.

is used as the input pattern of the neural network to
estimate the direction of the pointer movement.

The signal from the (L+ )-th channel is employed to
process the click event in the operation. The EMG
signal from the (L+ )-th channel, EMGL+1(t), is
measured in a di erent part of a body (e.g, the neck)
from signals of other channels. When the value of
EMGL+1(t) exceeds the prespecified threshold, it is
determined that a click event has occurred.

3.2 Neural Network [7]

In the neural network, the direction of the pointer
movement is estimated from the EMG pattern x(t)
extracted by the EMG signal processor. To achieve
reliable GUI operation, it is necessary to control the
direction of pointer movements accurately according
to the intention of the operator. However, if the
pointer is allowed to move in all directions from the
current position, the number of moving directions
will be infinite. Consequently, in the proposed sys-
tem, a finite number of base directions is shown on
the computer display, and the operator’s intended
direction is estimated from the probability that the
pointer will move to each base direction. The mov-
ing direction of the pointer is calculated from the
estimated results for all base directions.

For example, in Fig. , the moving direction is esti-
mated as the bold arrow by using K base directions
( , 2, · · · ,K). An arbitrary intended direction can
be represented with a set of arrows corresponding to
the probability of the pointer movement to a finite
number of base directions. Since the neural network
utilized in this system only estimates the probability
for each base direction, it may lead to avoid a heavy
learning calculation and a huge network structure.

R-LLGMN [7] is used for the estimation. R-LLGMN
can acquire CDHMM [8] through learning and can
calculate the a posteriori probability of the pointer
movement according to this model. The probability
density function is expressed by the weighted sum of

the Gaussian components. It enables the R-LLGMN
to learn the complicated mapping between the oper-
ator’s EMG patterns and the pointer movements.

The structure of R-LLGMN is shown in Fig. 2.
The five-layered structure with feedback connec-
tions between the fourth layer and the third layer
is of good correspondence with the algorithm of
CDHMM. There are C classes and each class c (c
, · · · , C) is composed of Kc states. The a posteriori
probability, which is calculated in the class c and the
state k, is approximated by summing up Mc,k com-
ponents of a Gaussian mixture distribution. How-
ever, R-LLGMN is not just a copy of CDHMM. The
essential point of R-LLGMN is that the parameters
in CDHMM are replaced by the weight coe cients
wck0,k,m,h, and this replacement removes restrictions
of the statistical parameter in CDHMM (e.g., 0
the transition probability , and standard devi-
ations > 0). Therefore, the learning algorithm of
R-LLGMN is simplified and can be expected higher
generalization ability than that of CDHMM. That is
the great advantage of R-LLGMN.

First of all, the input vector x(t) = [x1(t), x2(t), · · · ,
xd(t)]

T <d(t = , . . . , T ) is pre-processed with a
non-linear computation and converted into the mod-
ified vector X <H :

X(t) = [ ,x(t)T, x1(t)
2
, x1(t)x2(t), · · · ,

x1(t)xd(t), x2(t)
2, x2(t)x3(t),

· · · , x2(t)xd(t), · · · , xd (t)2]T. (2)

This nonlinear transformation is needed to repre-
sent the probability density function corresponding
to each component of the GMM in CDHMM’s state
as a linear combination of the new input vector
X(t). The first layer consists of H = + d(d+ 3)/2
units and the identity function is used for activa-
tion of each unit. Unit{c, k, k0,m} (c = , · · · , C ;
k, k0 = , . . . ,Kc ; m = , . . . ,Mc,k) in the second
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Figure 2: The structure of R-LLGMN

layer receives the output of the first layer (1)Oh(t)
corresponding to Xh(t) (h = , 2, · · · , H) weighted
by the coe cient wck0,k,m,h. The relationship between
the input and the output in the second layer is de-
fined as

(2)Ick0,k,m(t) =

HX
h=1

(1)Oh(t)w
c
k0,k,m,h, (3)

(2)Ock0,k,m(t) = exp
³
(2)Ick0,k,m(t)

´
, (4)

where C is the number of classes corresponding to
the number of the base directions, Kc is the number
of states, Mc,k is the number of the components of
the Gaussian mixture distribution in the class c and
the state k.

The input into a unit {c, k, k0} in the third layer
integrates the outputs of units {c, k, k0,m} (m =
, . . . ,Mc,k) in the second layer. The output in the
third layer is that input weighted by the previous
output in the fourth layer. The relationship in the
third layer is defined as

(3)Ick0,k(t) =

Mc,kX
m=1

(2)Ock0,k,m(t), (5)

(3)Ock0,k(t) =
(4)Ock0(t )(3)Ick0,k(t), (6)

where (4)Ock0(0) = .0 for the initial state.

The fourth layer receives the integrated outputs of
units {c, k, k0} in the third layer. The relationship in
the fourth layer is defined as

(4)Ick(t) =

KcX
k0=1

(3)Ock0,k(t), (7)

(4)Ock(t) =
(4)Ick(t)PC

c0=1
PKc0

k0=1
(4)Ic

0
k0(t)

. (8)

At last, a unit c in the fifth layer integrates the out-
puts of Kc units {c, k} (k = , . . . ,Kc) in the fourth
layer. The relationship in the fifth layer is defined as

(5)Ic(t) =

KcX
k=1

(4)Ock(t), (9)

(5)Oc(t) = (5)Ic(t). ( 0)

The output of the network (5)Oc(t) indicates the a
posteriori probability of pointer movement to the base
direction k (see Fig. ).

R-LLGMN must be learned before the operation. In
the learning process, the specified direction of the
pointer movement (0 < 2 ) is indicated to an
operator on the display, and the operator is asked to
generate the EMG signals according to this direction.
The order of presenting the specified direction is
random, where is defined as 0 in the positive di-
rection of the X-axis and increases counterclockwise.
The N pairs of the EMG patterns and the specified
direction are then used as the learning data.

3.3 Pointer Controller

The pointer controller determines the direction and
the speed of the pointer movement. The direction
of the pointer movement is estimated using the out-
put of the neural network. The output of the R-
LLGMN (5)Oc(t) indicates the a posteriori probabil-
ity that the pointer will move to each base direc-
tion k as shown in Fig. . Therefore, the direction
of the pointer movement by the t-th EMG pattern,
e(t) = (eX(t), eY (t))

T, is defined as follows:
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eX(t) =
vX (t)p

v2X(t) + v
2
Y (t)

, ( )

eY (t) =
vY (t)p

v2X(t) + v
2
Y (t)

, ( 2)

vX(t) =

KX
k=1

(5)Oc(t)cos(2 (k )/K), ( 3)

vY (t) =

KX
k=1

(5)Oc(t)sin(2 (k )/K). ( 4)

To control the speed of the pointer, the muscular
contraction level (t) is calculated as

(t) =

PL
i=1EMGi(t) EMGi

stPK
k=1EMGk

max(5)Oc(t)
, ( 5)

where EMGi
st
is the mean value of EMGi(t) while

relaxing the muscle; and EMG
max

k is the mean

value of
PL

i=1 EMG
max
ki (t), where EMGmax

ki (t) (k =
, · · · ,K) is measured for base direction k while keep-
ing the maximum voluntary construction (MVC) be-
forehand. This muscular contraction level is utilized
to regulate the di erence among the levels for each
direction in MVC.

In order to realize smooth pointer movement corre-
sponding to the operator’s intended direction and
force sense, we use the following physical model
based on (t) and e(t):

Mep̈(t) +Beṗ(t) = F (t), ( 6)

where Me and Be denote the inertia and the viscos-
ity parameter, respectively; and p(t) is the position
vector of the pointer. F (t) is the drive force to the
pointer depending on (t) and e(t).

F (t) =
g (t)e(t) ( (t) 0)

0 ( (t) < 0)
, ( 7)

where g and 0 are the force gain and the threshold
that determine whether the pointer has been oper-
ated or not. Equation ( 6) expresses the dynamic
motion equation of an object (weight Me) in viscous
space with force F (t) and viscous friction Be. The
position and velocity of the pointer are calculated by
numerical integration depending on such the phys-
ical model, so that it can be expected to realize a
natural feeling of control corresponding to the force
sense of an operator.

4 EXPERIMENTS

To examine the feasibility of the proposed method,
we conducted pointer control experiments. Seven
electrodes (L=6: six in the right forearm and one in
the left forearm) were used, and the direction of the
pointer was aligned to the bending direction of the
right wrist of the subject. The information on click
events was extracted from the EMG signal measured
at the left forearm. The length of the training data
was T = 20, and 2 samples of the learning data were
used for each base direction.

Figure 3 (a)(b) shows an example of the pointer con-
trol. To confirm omnidirectional control ability, the
operator tried to draw the circle. In the experi-
ment, the length of the discrimination data was set
as T = 5. Figure (a) shows a trace of the pointer
movements, where the pointer positions are plotted
in every 0. [s], and the arrow indicates the pointer
movement; Fig. (b) shows time histories of the EMG
signals, the muscular contraction level (n), the click
signal, and the velocity and direction of the pointer
movement. It can be seen that the direction and the
velocity of the pointer movement can be voluntarily
controlled by using the EMG signals. Also, the drag
movements can be observed from 5.7 [s] to 7.7 [s].

Next, we compared the accuracy of the pointer move-
ment by R-LLGMN with by LLGMN [3]. R-LLGMN
can be regarded as an extension of LLGMN, in-
troducing recurrent connections into LLGMN. The
authors have tried to develop the EMG-controlled
pointing device using LLGMN, and reported the
problem of the control accuracy [5], [6]. Figure 4
(a)(b) shows the control accuracy depending on the
direction. The mean values and standard deviations
of the direction error are calculated for 2.0 [sec] time
period. The length of the discrimination data was set
as T = . The experimental results shows that the
estimated direction of R-LLGMN are closer to the
correct values than the one of LLGMN because the
direction errors are improved remarkably. The oper-
ator can control the pointer in any direction through-
out 360 degrees.

5 CONCLUSION

In this paper, we proposed a new pointing device
using the EMG signals and developed a prototype
system. The proposed pointing device incorporates
a neural network with a statistical structure and ap-
plies it to process EMG signals so an arbitrary direc-
tion of the pointer movement can be represented by
combining finite base directions. The experiments
verified that the proposed pointing device may be
quite useful as a new interface tool.

Future e ort will be directed to improving the system
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(a)

(b)

Figure 3: An example of the pointer control.

performance, such as the usage of a macro function
with gesture commands.
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