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- ABSTRACT

A pattern discrimination method of electromyogram
(EMG) signal for prosthetic control is presented in this pa-
per. This method uses a novel recurrent neural network
based on the hidden Markov model. This network includes
recurrent connections to enable the capability of modeling
time series such as the EMG signal. Weight coefficients
in the network can be learned using a well-known back-
propagation through time algorithm. The pattern discrim-
ination experiments were conducted to demonstrate fea-
sibility and performance of the proposed method. This
method successfully discriminated forearm motions using
the EMG signal, and achieved considerably high discrimi-
nation performance in comparison with the other discrimi-
natiop methods.

KEY WORDS
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Neural Network.

1 Introduction

A human-machine interface for prosthetic control is
important to assist the disabled who have lost. their
manipulation capability of the upper Limb. EMG signal
is often used as an interface tool for prosthetic devices
since the EMG signal is the manifestation of the electrical
stimulations, which motor units of the arm receive from
the Central Nervous System (CNS), and 1t indicates the
activation level of motor units associated with contraction
of muscle. Different motions resulting from different
modes of muscle activation generate different EMG pat-
terns. Many researchers have tried to use the EMG signal
to provide control command for the prosthetic arm [1]-[11].

Various techniques have been proposed to discriminate
the EMG pattern. Graupe et al. [1] used autoregressive
{AR) models to represent the EMG signal, which was
~ measured from a single electrode-site between Biceps and
Triceps. Motion patterns were discriminated according
to the parameters of the AR model. Tsuji er al. [2] used
a muld-dimensional AR model, and discriminated the
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forearm motions using the frequency and the amplitode
characteristics extracted from. the multi-channel EMG
signals. However, these methods could not achieve high
discrimination performance, because they applied a linear
model] to approximate the nonlinear characteristics of the
EMG signal, which change largely depending on muscle
fatgue, sweat, changes of electrode location, and so on.

Neural Network (NN} is suitable for modeling non-
linear data, and can cover the distinction among different
conditions. Several EMG pattern discrimination methods
based on NN [3}-[11] have been presented in the last
decade. For example, Hiraiwa ez al. [3], [4] used a back-
propagation (BP) NN to perform pattern discrimination
with frequency features. Kelly er al. [5] succeeded in
discriminating four forearm motions (Flexion, Extension,
Pronation, Supination) using the combination of BPNN
and a Hopfield NN. Similar works have also been done by
Koike and Kawato [6], Huang and Chen [7], etc. However,
BPNN frequently used in the previous researches cannot
realize high learning and discriminating performance, and
a large amount of learning data as well as a great number
of learning iterations is required.

On the other hand, Tsuji et al. put forward NN in-
cluding a statistical model [8], and used the entropy which
was calculated from the outputs of NN to reduce incorrect
discrimination [9]. They also proposed a feedforward
probabilistic NN, a Log-Linearized Gaussian Mixture
Network (LLGMN) [10], which is based on the Gaussian
mixture model (GMM) and the log-linear model of the
probability density function. LLGMN was successfully
applied to the EMG pattern classification, where eight
motions of forearm were classified using EMG signals
measured from several pairs of electrodes [11]. However,
these methods just focused on the static features of EMG
signal, so that the time-varying characteristics were not
taken into account. That is why high classification perfor-
mance cannot be achieved.

This paper proposes a new EMG pattern discrimination
method using a recurrent NN, a Recurrent Log-Linearized
Gaussian Mixture Network (R-LLGMN) [12]. R-LLGMN
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Figure 1. Structure of R-LLGMN.

is based on the algorithm of Hidden Markov Model
(HMM) [13], and incorporates recurrent connections to
make use of the time context in the EMG signal. With the
weight coefficients well learned using a learning scheme
of the back-propagation through time (BPTT) algorithm
[14], R-LLGMN can calculate the a posteriori probability
of discriminating class for each EMG pattern. Pattern
discrimination experiments of the EMG signal were
conducted using R-LLGMN with five subjects, and the
proposed method was compared with BPNN and LLGMN
in the experiments.

This paper is organized as follows: Section II expldins
the architecture and the learning algorithm of R-LLGMN.
The EMG pattern discrimination method is described in
Section H1. The discrimination experiments are presented
in Section IV. The final section gives the conclusion of this

paper.

2 A Recurrent Log-Linearized Gauséian
Mixture Network

A Recurrent Log-Linearized Gaussian Mixwre Network
(R-LLGMN) {12}, which is based on GMM and the HMM
algorithm, is adopted in the proposed EMG pattern dis-
crimination method. The HMM is a well-studied technol-
ogy for discrimination of time series and has been success-
fully applied in the field of speech recognition. The net-
work structure and the learning algorithbm of R-LLGMN
are explained in the following subsections.

2.1 Network Structure

R-LLGMN is a five-layer recurrent NN with feedback
connections between the forth and the third layer, the
structure of which is shown in Fig. 1. In this structure, a
continuous density HMM [13] is included. There are C
classes in this model and the class ¢ (¢ € {1,...,C}) is
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composed of K, states. The observation probability of
state k (k € {1,..., K.}) in class ¢ is approximated with
GMM. Suppose that, for an input vector series x(t) € ®¢
(t=1,...,T), x(t) must occur from one state k of class ¢
in the model at any time. It is expected that the a posteriori
probability for each class can be estimated with a well
trained R-LLGMN. -~

First, the input vector series x{t) € ®¢ (¢ = 1,...,T) is
pre-processed into the modified input series X (¢) € R¥ as
follows:

X(t> = (1>x(t)T:x{t)lz’m(ﬂlx(t)%‘“7

2(t)12(t)a, (t)2”, ()2 (t)3, -
2(t)2z(t)a, -, z(t)a)T, m

where the dimension H . is determined as H =
1 + d(d + 3)/2. The vector X(¢) acts as the input
of the first layer, and the identity function is used for acti-
vation of each unit. The output of the hth (h = 1,..., H)
unit in the first layer is defined as WOy, (2).

Unit {¢,k,k',m}(c =1,...,C;K k =1,...,Ks;m =
1,..., M) in the second layer receives the output of the
first layer weighted by the coefficient w{, ; ,,, ». The input
@I¢, . m(t) and the output PO, | (1) are defined as

H
DL em®) = VORI mns @

‘ he=1

@0g jmlt) = e (VL m®), B

where C is the number of discriminating classes, K, is the
pumber of states in class ¢, and M, ;. denotes the number
of GMM components in the state k of class ¢.

The outputs of units {c, k,k’,m} in the second layer
are added up and input into a unit {c, k, k'} in the third



layer. Also, the output of the fourth layer is fed back to the
third layer. These are expressed as follows:

Mc,k

OLE (1) =>_ POL 4 (0, )
me=l

®0g, (1) = D0g (t ~ 1)L (1), (5)

where (D 0O¢, (0) = 1.0 is for the initial phase.

The activation function in the fourth layer is described in
the form as

. Kc
@Oree) = > P0g (1), ()

ket =1
WIet)
C Kc/ ! i
w1 oty WIE ()

@Wog(t) = )

In the ﬁfth layer, the unit ¢ integrates the outputs of
K. wnits {c,k} (k = 1,...,K.) in the fourth layer. The
relationship in the fifth layer is defined as

Kc

@1ty =3 _Dox), ®)
k=1

BIoc(t) = B 1°(1). 9)

After only optimizing the weight coefficients wi ;.. 5
between the first layer and the second layer, this NN can
estimate the a posteriori probability of each class. In
the next subsection, the learning algorithm for this NN is
described briefly.

2.2 Learning Algorithm

A set of input vector streams %™ = (x(1)™, x(2)™,
‘--’X(Tn)(n>) (n = 1,...,N) and the teacher vector
T = (T, T8 TENT are given for the
learning of R-LLGMN. It is supposed that the network ac-
quires the characteristics of the data through learning, if

for all the streams the last output of stream %) namely

®GIOT,) (¢ = 1,---,C), is close enough to the teacher
signal T, The energy function for the network is defined
as

n=1 n=1 ¢=1 -

N N C
T=3 Ju==3 Y TMi0g®0T,). (10

The learning process is to minimize J, that is, to maximize
the likelihood that each teacher vector T(™ is obtained for
the input stream %), In this paper, the backpropagation-
through-time (BPTT) algorithm {14} 15 applied in the learn-
ing:rule because of the recurrent connection in R-LLGMN,
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Figure 2. Structure of the proposed method.

dtis supposed that the error gradient within a stream (block)

is accumulated and weight modifications are only com-
puted at the end of each block; the error is then propagated -
backward to the beginning of the block.

3 EMG Discrimination Method

A structure of the proposed discrimination method is
shown in Fig. 2. This method consists of three parts in
sequence: (1) EMG signal processing, (2) Recurrent neu-
ral network, and (3) Discrimination rule. First, the EMG
signals are processed to extract the feature patterns. The
EMG signals measured from L pairs of electrodes are rec-
tified and filtered by a second-order Butterworth filter (cut-
off frequency: 1 [Hz]). Then, they are digitizéd by an A/D
converter with sampling frequency fg [Hz]. Each sampled
data is defined as EMG{t){l = 1,--+, L) and is normal-
ized to make the sum of L channels equal to 1:

EMG(t) — EMG;®
> (EMGy(t) -~ EMGYf

U==1

where EMGS? is the mean value of EMG;(t) which
is measured while relaxing the arm. The feature vector
x(t) = [z1(t), z2(t),-..,2L(t)] is used for the input of
R-LL.GMN. In this paper, we assumed that the amplitude
level of the EMG signal is changed in proportion to muscle
force. Force information Fr e () for input vector x(t) is
defined as follows:

1< EMG(t) - EMGSt
L £ EMGy*= - EMG{®’

Fema(t) = (12)

where EM GT**Z is the mean value of EM G (t) measured
while keeping the maximum voluntary contraction.

For the pattern discrimination, R-LLGMN described
in 2.1 is employed. Using samples labeled with the
corresponding motions, R-LLGMN learns the non-linear
mapping  between the EMG patterns and the forearm
motions. - Given an EMG feature stream x{t)(¢t = 1,---,
T), the output &)O(T) (¢ = 1,---,C) presents the a
posteriori probability of each discriminating motion.



In order to recognize whether the motion has really hap-
pened or not, the force information Feuclt) is compared
with the prefixed motion appearance threshold My. The
motion is considered to happen if Fgae(t) is over than
M. The entropy of the R-LLGMN’s oufputs is also
calculated to present the risk of ill-discrimination. The
entropy is defined as

C
H(t) = = 50%t)log, S0°(2). (13)

c==1
If the entropy H () is over the discrimination threshold Hy,
specific motion whose probability is the largest one is de-
termined according to the Bayes decision rule. If not, the
determination is suspended.

4 Experiments
4.1 Experimental Conditions

EMG pattern discrimination experiments were conducted
to examine performance of the proposed method. Experi-
ments were held with five subjects (A, B: Amputee; C, D,
E: Normal).

Subject A (male) lost his forearm about 3em from
the left wrist. EMG signals were measured from six pairs
of electrodes (L = 6) with a sampling frequency fg = 60
[Hz], and the electrodes were attached to his forearm
and upper arm (Flexor Carpi Radialis (FCR), Extensor
Carpi Ulnaris (ECU), Flexor Carpi Ulnaris (FCU), Biceps
Brachii (BB), Triceps Brachii (TB); two pairs on FCR and
one pair on the others). The subject was asked to perform
six motions (C' = 6) in the order of: flexion, extension,
supination, pronation, hand grasping and hand opening
continuously for six seconds.

Subject B (male) lost his right hand about -15cm from the
wrist. EMG signals were measured from eight pairs of
electrodes attached to his forearm and upper amm (L = 8),
and fy was set at 100 [Hz]. EMG signals during eight
motions (C = 8: flexion, extension, supination, pronation,
‘hand grasping, hand opening, co-contraction of wrist joint
and co-contraction of finger part) for 20 seconds were
recorded continuously.

Subject C (male), D (male) and E (male) are all
normal-limbed, and six pairs of electrodes (L = 6)
were attached in the same way as subject A. EMG signals
were measured (sampling frequency: 100 [Hz]) for 22
seconds, and seven motions (C = 7) were performed with
the order of hand grasping, hand opening, extension, flex-
ion, pronation, supination and co-contraction of finger part.

In the learning process of R-LLGMN, 20 EMG pat-
temns extracted from the EMG signals for each motion
and teacher signals consisting of C x 20 patterns were
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Figure 3. An example of the discrimination result.
Flexion()  Extension(2) Pronation(3)
Supination{4)  Grasping(5) Opening(6) .
Figure 4. Motions.
used. The determination threshold 'Hy and the mo-

tion appearance threshold My were set at 0.5 and 0.2,
respectively.

4.2 Results

4.2.1 Discrimination Accuracy

An example of the discrimination result of subject A is
shown in Fig. 3. In this figure, six channels of the in-
put EMG signals, the force information Feamca(t), the en-
tropy H (t) and the discrimination results are plotted. The
labels of the vertical axis in the discrimination results cor-
respond to motions shown in Fig. 4, and SUS means that
the determination was suspended. The gray areas indicate
that no motion was determined because the force infor-
mation is less than M. Incorrect determination was re-
moved using the entropy. It can be seen from Fig. 3 that
the proposed method achieves high discrimination perfor-
mance even non-stationary EMG signals during the contin-



Table 1. DISCRIMINATION RESULTS OF FIVE SUBJECTS

Subject A B | C D E
R-LLGMN 99.06 89.32 93.04 93.49 92.75
MeanSD(®)] +0.00 | +037 | £011 | £000 | £0.00
LLGMN 94.00 82.83 88.50 88.67 89.26
MeanSD (%) +5350 | £000 | 004 | 015 +0.14
BPNN 73.41 46.52 44,20 69.79 69.17
Mean=SD{%)] +7.86 | +123 | +104 | £997 | +7.00

pous motion.

Accuracy of the discrimination results for five subjects (A,
B, C, D and E) was investigated as well. To verify the dis-
crimination performance of the proposed method, compari-
sor experiments with LLGMN and BPNN were conducted.
The determination thresholds of LLGMN were set as the
same values of R-LL.GMN. On the other hand, BPNN had
four layers (two hidden layers), and the units of each layer
were set as 8, 10, 10 and 8, respectively. Each output of
BPNN corresponds to each motion, so that it was normal-
ized to make the sum of all outputs equal 1.0 and regarded
as the a posteriori probability of each motion. The same
determination thresholds were also used for the discrimi-
nation of BPNN. The learning procedure of BPNN contin-
ued until the sum of the square error became less than 0.01,
where the learning rate was 0.01. However, if the sum of
the square error after 50,000 iterations was still ot less
than 0.01, the learning procedure was stopped. In all the
three methods, 10 different sets 'of initial weights (all ran-
domized between {0, 1]) were used.

The mean values and the standard deviations of the dis-
crimination rates are shown in Tables 1. It can be seen that

R-LLGMN achieved the best discrimination rate with a

small standard deviation among all the three methods.

Discimination rate [%}

85 . k] - 1 1 i L]
1 2 4 5 10 20

Length of the sample data

Figure 5. Discrimination rates for various data lengths
(Subject B).
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Figure 6. Discrimination rates for different model sizes
(Subject B).

4.2.2 Changes of Discrimination Rate with
Various Conditions

The discrimination results were examined by changing
the experimental conditions such as the length of sample
data and parameters in the continwous density HMM.
First, experiments were performed using various lengths
of sample data. For each sample data, R-LLGMN was
trained with 10 different sets of inittal weights, which
were randomly chosen in [0,1]. The mean values of
the discrimination rates for each length are shown in
Fig. 5, where, the standard deviations are all very small,
almost close to 0. It can be seen from Fig. 5 that the
discrimination rate keeps in a high level when the sample
data has an appropriate length (7). However, if T > 5,
it is too long to train R-LLGMN, the discrimination rate
tends to decrease because R-LLGMN which is learned by
long length sample data failed to discriminate in switching
motions.

On the other hand, examinations were carried out by vary-
ing the number of components (M, ;) and states (K.). Ten
sets of randomly chosen initial weights were used to train
cach sample data. The mean values and the standard devi-
ations of the discrimination rates for different model sizes
(Mg x Ko @ Mcp € 11,2,3,4,8; K, € {1,2,3,4,3)



are plotted in Fig. 6. In this figure, the discrimination
rate does not increase according to the augmentation of
the model size. The reason is considered that even when
M, = K. = 1, the network has enough weights to model
the desired non-linear mapping. However, the standard
deviation increases as the model size increases, because
there are more local minima to learn a larger model.

5 Conclusions

In this paper, a new EMG discrimination method based
on a recurrent Log-linearized Gaussian mixture network
(R-LLGMN) has been proposed for prosthetic control.
Because of the recurrent connections between the third and
the fourth layer in R-LLGMN, the temporal information in
the EMG signal can be used for the pattern discrimination.

To examine the discrimination capability and the acci}.racy
of the proposed method, EMG pattern discrimination
experiments have been carried out with five subjects. In

the experiments, the proposed method achieved a high

discrimination performance for varying EMG signals, and
its discrimination results are the best comparing with those
of LLGMN and BPNN.

In our futtre research, we would like to develop a
new pre-processing of the EMG signal. Discrimination
performance should be improved using a combination of
new pre-processing and R-LLGMN.
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