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Abstract

This paper discusses a sufficient condition for manipu-
lation of Envelope Family, where multiple contacts are
allowed between object and chains (or environment),
Al chains are assigned by either position controlled
chain (P-chain) or torque controlled chain (T-chain).

While the object motion under multiple contacts can

not be uniguely specified by T-chains only, we show a
sufficient condition ensuring that a given set of torgue
commands for T-chains always move the object toward
the goal along the surface of P-chain {(or a fized envi-
ronment). Ezperiments as well as simulations are also
shoum to verify the basic idea.

Key words: Enveloping Gresp, Fnvelope Family,
Manipulation of Object, Envelope Walk.

1 Introduction

Fig.1 shows a couple of examples of Envelope Family where
Fig-1(a), (b), and (c) are envelope grasp by a robot hand,
manipulation of a huge and heavy object by a humanoid
robot, and envelope walk by a legged robot, respectively.
Each robot in Envelope Family has a common working
style where multiple contacts are allowed between chains
and object (or environment). For a manipulation of ob-
ject or body, so far, many researchers have focused on the
link tip level manipulation or locomotion, since a dexter-
ous motion can be anticipated by utilizing many degrees
of freedom existing in the system. Such manipulation or
locomotion, however, may easily fail in grasping an ob-
ject under an external disturbance or in standing over the
ground with a steap slope. On the other hand, due to
multiple contacts, manipulation or locomotion in envelop-
ing style can be expected even more robustness than that
in tip level one. Also, this type of manipulation or locomo-
tion greatly contributes to suppressing the peak torque by
distributing the gravitational force to each contact point.
In 2 humanoid robot as shown in Fig.1{b), the manipu-
lation in enveloping style may provide the only feasible
solution under joint torque limitation.

‘While we can find such advantages for the manipulation
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Figure 1: Examples of Envelope Family

in enveloping style, there are a couple of barriers to break
through for achieving it. The biggest one is that the to-
tal force produced by all contact forces is not uniquely

" determined, due to the one-to-multiple mapping from the

joint torque to the comtact force. As a resuli, the mov-
ing direction of object is not uniquely specified either. To
make us release from the mapping problem, we give up
manipulating an enveloped object by pure torque control.
Instead, we assign all chains (fingers or legs) into position
controlled chain (P-chain} and torque controlled chain (T-
chain), respectively, where P-chain might be replaced by
an environment. Now, let us consider a sphere enveloped
by a robot hand as shown in Fig.1(a), where four fingers
are categorized into T-chains and P-chains. T-chains and
P-chains can be regarded as pushers and supports, respec-
tively. The object will move along the surface of P-chains,
if we impart an appropriate set of torque commands for the
T-chains. Under such multiple contacts, a rolling motion
may occur at a particular contact point, while sliding mo-
tions happen at most contact points. We do not care what
kinds of motion actually happen during the manipulation
process. The goal of this paper is to obtain a sufficient
condition ensuring that a given set of torque for T-chains
always move the object toward the designated direction
along the surface of P-chains (or environment).

Assuming that each contact force set is bounded and
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each link has one contact point with an object, we begin
by showing that the contact force set is always bounded
within the friction cone intersected by two parallel planes
(Theorem 1). Approximating each friction cone by a con-
vex polyhedral cone, we show that a vertex of total force
set always corresponds to a contact force lying on one of
span vectors on the approximated friction cone, while the
opposite flow is not always true (Theorem 2 and Theorem
3). We also show that if a convex polyhedral cone in-
cludes the original friction cone, the total force set under
the polyhedral cone always includes the one under the orig-
inal friction cone (Theorem 4). Based on these properties,
we introduce a sufficient condition for putting the total
force set under the original friction cone into the bounded
space {Theorem 5}, where the object always receives an
enough force to break the contact over the surface of P-
chains. To verify our basic idea, we show some experiments
as well as simulations. While we complete our formulation
for an enveloping grasp by a multifingered robot hand, the
result is available for the whole Envelope Family.

2 Related Work

Salisbury {1] has proposed the basic concept of whole-arm
manipulation by taking various advantages, such as the po-
tential capability of a large payload and the robustness of
holding an object against an external disturbance. Trinkle,
Abel, and Paul [2] have discussed the grasp planning issue
for enveloping a planar frictionless object. As far as we
know, "Enveloping Grasp” as a terminology has first ap-
peared in the paper. For an external disturbance, some
enveloping grasps can automatically generate a counter
force (or moment) to some extent without changing the
joint torque. Enveloping grasp having this characteristics
is particularly termed "Power Grasp” [3]-[8]. Mirza and
Orin [3] have pointed out that power grasps maximize the
load capability and are highly stable in nature because
of a large number of distributed contact points on the

grasped object. They applied a linear programming ap--

proach to formulate and solve the force distribution prob-
lem in power grasps and showed a significant increase in
the maximum weight. Bicchi [4] has addressed the prob-
lem of force decomposition in power grasps and showed
that internal forces allowing inner link contacts can be de-
composed into active and passive ones. Zhang, Nakamura,
Goda, and Yoshimoto [5] have provided the measure of the
robustness of power grasp, where they evaluate the robust-
ness by the minimum virtual work which breaks a contact
between the finger link and the object. Zhang and Gruver
[6] have defined the power grasp mathematically and ana-
lyzed the force distribution at the contact points. Omata
and Nagata [7] have shown the possible area of contact
forces by utilizing the constraint condition obtained by the
kinematic relationship. Yu, Takeuchi, and Yoshikawa (8]
have proposed a procedure for achieving the power grasp
optimization, where they searched the optimal configura~
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tion providing the minimum joint torque set for a given
admissible external force space. These works [3]-(8] dis-
cussed how firmly the hand can grasp the object. On the
other hand, we relax the grasping force and address the
manipulation issue for an enveloped object. In our former
work [9], we discussed how the enveloped object behaves
under a given set of torque and proposed the Force-Flow
Diagram for judging whether a global motion of the ob-
ject appears or not. It can be regarded that the work [9]
deals with a direct problem, where we examine the motion
behavior for a given set of torque. On the other hand,
this paper discusses, in some sense, an inverse problem,
namely, we pursue the torque command enabling the ob-
ject to always push the position controlled finger and to
break the frictional limit at contact points with P-chains.

3 A Sufficient Condition for Manipu-
lation o

3.1 Main Assumption

To simplify the discussion, we set the following assump-
tions.

Assumption 1: The robot hand has n T-chains and m
rotational joints per chain. Every joint axis in the i-th
chain is parallely arranged.

Assumption 2: Each link in T-chains has one contact
with the object.

Assumption 3: Mass of link is negligible.

Assumption 4: At each contact point, we assume a

~ Coulomb friction whose coefficient is given by u, where

both static and dynamic frictional coefficients are not dis-
tinguished.

Assumption 5: Positions of contact points and the cen-
ter of gravity of the object are both measurable.
Assumption 6: Each joint has 2 joint position sensor and
a joint torque sensor.

Assumption 7: Interference among chains is ignored.
Assumption B: Each joint actuator has its torque limi-
tation 7%,

Assumption 9: Small compliance is assumed at each con-
tact point, while the deformation due to the compliance is
neglected.

For a rigid body system with multiple contact points, an

- indeterminate contact force often appears at each contact

pointl4], [6], [7], {10]. With Assumption 9, we are per-

fectly released from the issue caused by the indeterminate

contact force, and the total force set by summing up all

contact forces keeps convex. For a further analysis, how-

ever, we do not utilize any compliance matrix explicitly

at each contact point. Instead, we consider all possible .
contact forces within the friction cone for a given set of

torque, which is equivalent to considering various compli-

ance matrices at each contact point.



3.2 Mapping from Torque to Contact
Force

Let us consider the i-th T-chain of a robot hand as shown
in Fig.1(a), where f,. and 7i = [ri1, -, 7im]" € Rmx!
denote the contact force vector at the j-th contact point
of the i-th chain, and the joint torque vector of the i-
th chain, respectively. We have the following relationship
71 = J4f,; between 7] and f;, where Ji; denotes the
transpose of Jacobian matrix mapping the contact force
into the joint torque. By utilizing the principle of super-
position for the relationship between 77 and f,;, T: is
given by T = 3 71, J;f,;- Therefore, the relationship
between the contact force and the joint torque for the i-th
T-chain is expressed by,

7= Iifs W
where f, = [fi. -1 Foml’ € B¥™!, and
Ji = | e Il 'P))
Jin fim

i

‘ . € Rm x3m (3)
o Jimm

‘ Hereafter, to avoid the complicated notation, we often ne-
glect the subscript showing the i-th chain as far as it is not
necessary.

While both the contact and the total forces span convex
sets unless any indeterminate contact force appears. It is
interesting to know under what condition the total force
becomes maximum (or minimum) in a designated direc-
tion. The most likely case may be that it occurs when ev-
ery contact force lies on the friction boundary. Is it always
true? To answer the question, we begin by introducing the
following definition and theorem.

[Definition] It is called contact-force-bounded, if the con-
tact force spans a bounded set within the friction cone. It
is called contact-force-open, if the contact force spans an
open set within the friction cone.

It should be noted that under a constant torque control,
one link system contacting with an object always results
in the contact-force-bounded in 2D but not always in 3D.
Hereafter, we assume that the contact-force-bounded is
satisfied at each contact point.

[Theorem 1} Suppose a T-chain under consianl torque
control. Under the contaci-force-bounded, each contact
Jorce spans a convex set constructed with the friction cone
intersected by two parallel planes.

[Proof] Since the Jacobian J is an upper triangular ma-
trix (see eq.(3)), for the mm component, we can find the
relationship of Tm = Jimf,.- By solving the equation
with respect to f,.,

fm = (J:nm)gfm + {I3 - (Jﬁnm)n‘}izm}wm (4)
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Figure 2: Contact force sets in m and m-1 contacts

where Wy, € RB®*! and { denote an arbitrary vector and
the seudo-inverse matrix, respectively, and f,, € R**1,
Jtim € R¥™3 and I; € R¥® (Identical Matrix), respec-
tively. Since rank(J%,m) = 1, rank(Ils — (Jium ¥ T tnm) =
2, which means that there exists only two independent pa-
rameters in Wm and, therefore, {I3 — (Jim) Jinm}twm
spans a plane. Due to the orthogonal relationship between
(anm)g'rm and {I3 — (Jtrhm)ﬂ']:nm}wms we have the ge-
ometrical representation as shown in Fig.2(a), where the
hatched area denotes the contact force set under constant
torque control. For the last link, the contact force set can
be regarded as the cross section of the friction cone in-
tersected by two parallel planes whose distance is zero.
Now, let us consider the contact force f,, _, by fixing
Wm = Wno. From the relationship between the torque
and the contact force, we obtain,

Tm—1 = qu-—lm—lfm-—i + an-lmfm )
sz~lm—1fm—} +
J:n——lm{(Jtnm)ﬂTm + Bmwmo} (6)

where B, = Is — (Jt0 F It € R¥*3. The second term
of the right hand side of eq.(6) is constant, because both
Tm and Wro are constant. Replacing the second term of
the right hand side by T,,_1, €q.(6) is rewritten into the
following form.

Tl — Ti'n-—-l = J:n-—lm—lfm—l (7)

where 79,3 = J; i (T em)*Tm + BmWmo}. From
eq.(7), we can obtain

fm—-l == (J:n-—lmwl)ﬂT:n-l + Bm—lwm-l (8)

where Thi.; = Tm-1 — Tim~1- By changing the vec-
tor Wy, in H,,, we can obtain the contact force set
Um—1, as shown in Fig.2(b). Note that two planes H -1
and H,,_; are parallel each other, since the direction of
(Jntm—1)¥Th—1 does not change while T3,_, varies de-
pending upon W.,. Therefore, U,,—1 is bounded with
the m-1-th friction cone intersected by two parallel planes.
Now, suppose that the contact force f ; spans a convex set

constructed by two parallel planes H ; and H; cutting the



friction cone. Under this assumption, we consider the con-
tact force f,_;. By the assumption, f; can be expressed
by

fj == (J;’j)”{’r;min -+ (T;maa: - T;min)nj} + ijj (9)

where n; is the parameter determining the magnitude in
the direction of (J' 3)“ and 0 € n; < 1. The former discus-
sions prove that f._; spans a plane under n; = 750 and
w; = Wjp. By changing w; under n; = 10, we can easily
show that the contact force set is-bounded with the ¢-1-th
friction cone intersected by two parallel planes. These dis-
cussions can be further extended that the contact force set
U ;-1 is bounded by two parallel planes cutting the fric-
tion cone even when both w; and 7; are changed, which
proves the theorem. o

This theorem guarantees that each friction cone is never
cut by more than two planes. This nature of the boundary
provides a good hint for determining where each contact
force lies, when the total force becomes maximum (or min-
imum).

3.3 Friction cone approximation
In order to change from nonlinear to linear friction con-

straint, we approximate the i-th friction cone of the i~th
chain by the L faced polyhedral convex cone{l11}, {12].

L o
Z)\iﬂ’% (X >0) (10)

=1

where Vi; = [vh,---,v5] € R and A; =
M, -+, A5 € RY*1. For the i-th chain, we obtain the
following form.

F. =V (12)
where X; = [Al, -, ALL)t € RP™*) and
Vu [
Vi= g RimxLm (13)
3] V:’m
From eq.(1) and (12},
= JiVi » (14)
For n fingers, we obtain
T1 J § V1 o )&1
= ; (15)
Tn 0 JEVL] L.

By solving eq.(15) with resppect to A = [)\i-u)\f,]t
RLmnx l’ .

A=H'r4+ I pmn — H'H)x (16)

where

J§V1 (8]
H= ,
o JLV,

z € RF™™*1 denotes an arbitrary vector, and § shows
the pseud&inverse. Since A € RI™*} and + =
[T1,--,Tx]t € R™>!, & has (L — 1)nm independent pa-
rameters under a full rank matrix H Thus eq.(16) can be
rewritten as follows:

A= H'r 4+ N®, an

_where PCcRE-UmnX1 4o an  arbitrary vector and

NegRUmnx(t—1imn i3 the full rank matrix satisfying H
N =0. As a result, the total force of the center of grawty
of object f, is expressed by

f., = EV{H'r+N¢} (18)
where E = (Ii,---,I) € ¥
' V] (3]
V 1 T .
o Va

3.4 Relationship between total force and
contact force sets

We now come back to the question where each contact force
lies when the total force becomes maximum (or minimum)
in the designated direction. To answer the question, we
introduce two theorems, Theorem 2 reviews general prop-
erties on a polyhedral convex set and Theorem 3 describes
the inherent relationship between contact force and total
force sets.

[Theorem 2] Let Ci(i = 1,---
set. Define C = Ci+ -+ +Cn, where Ci + --- + Cn 2
{1+ +Eal@eCi(i=1,.--,n)}. {1)C is a polyhe-
dral convez set. (2) Each vertex in C always corresponds

,n) be a polyhedral convex

* to @ vertexr in C;, while a verter in C; does not alweys cor-

respond to a vertex in C.
[Proof] See appendix.

[Theorem 3] For the i-th T-chain with m contacts, sup-
pose that each friction cone is modeled by a convez polyhe-
dral cone and centact-force-bounded is guaranteed. Under
constant torque control, each f,,(j = 1,---,m) always kes
on one of span vectors vij of the cone, when f,, becomes
mazimum (or minimum) in a certain direction.

[Proof] From Theorem 1, each contact force f;(j =
1,.--,m) spans a convex polyhedral set constructed by
two parallel planes cutting the approximated convex poly-
hedral cone. Let C;; be the j-th convex polyhedral set
of the i-th chain. Since every vertex in C;; appears only
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Figure 3: Corresponding relationship between vertex

on span vectors under contact-force-bounded as shown in
Fig.3, Theorem 2 guarantees that a vertex in the convex
polyhedral set spanned by f; always corresponds to a con-
tact force lying on one of span vectors, as shown in Fig.3,
which holds the theorem. : . O

Theorem 3 allows us to focus on the contact force coincid-
ing with a span vector, when discussing the boundary of to-
tal force set. From Theorem 3, we can set ,\f; > 0(k = k;)
and )\fj = O(k # kj) for A5 (k = 1,---, L), such that we
can find the boundary of the total force set for the i-th T-
chain. Based on this property, we introduce the following
two constraints.

SA>o0 (19)

S‘A=0 (20}
where
S, o S3 o
S: ,S‘ = ’
(4] Sn o S:‘
[ ek, o ’
S,* = c Rmem - (21)‘
o €im
[ I o
5 = X ¢ RiL-tmxLm (22)
o I,
I’j == {elv"‘1ekj—hekj+h"',e;}‘
eR(L—-I)xL (23)
e; = [0,.-:,0, 1, 0,---,0' €RM¥! (24)

1;"',kj._|. kj. k_,;.l,“-,L

Eq.{20) is for keeping each contact force in the pushing di-
rection for the object, and eq.{21) is for making each con-
tact force adhere to one ridge. Since S*gR(L—1mnxlmn
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Figure 4: Several polyhedral convex cones

and NeRElmnxX(L-Umn o0 full rank, 8*N becomes a
nonsingular matrix. From eq.{17) and eq.(21), @ is ob-
tained as follows:

&=-D"'S"H'r, (25)
where
D=S8"N. (26)
Substituting @ into eq.(17) and ineq.(20}, we obtain
S(I-ND'S)H'r>o. (27)

Also, by utilizing eq.(26), the total force set can be ex-
pressed in the following form.

J.=EV(I-ND7'S")H'r (28)

By changing k;, we finally obtain L™" set of inequalities
and equations given by ineq.(28) and eq.(29), respectively.
We note that eq.(29) includes joint torque 7; explicitly. By
utilizing eq.(29), we can discuss how to determine the com-
mand torque, so that the object- may move in a bounded
direction along P-chains {or environment). Now, recall
that each friction cone is approximated by a polyhedral
convex cone. By this approximation, we can no more keep
the exactness for both the contact and the total force sets.
This causges that either the total force set may be produced
by the contact force never existing actually, or it dose not
include the contact force existing under the actual friction
cone. To make clear the relationship between two total
force sets obtained under the approximated friction cone
and under the actual one, we introduce the following the-
orem.

[Theorem 4] Suppose & T-chain under constant torque
control and contact-force-bounded. Let CV) and C® (C!V
C C™) be two polyhedral convez cones. Also, let F*) and
F® be contact force sets produced under C') and C?, re-
spectively. When V() = FOLFD 4+ F 6 =10r9),
V(1 € VP is ahways guaranteed, where FIO 4. ..+ FO &
{2+ 2@ 2P e FPG =1, ,m)}

{Proof] For the m-th link, since the plane produced by
B w., expresses the cross section of the m-th friction
cone, f,(,f) c .F,f,f) is obvious. Now, suppose ff’ c



’f,(f)(k = {,---,m)}). Under this assumption, we consider
the contact force f,_,. From eq.(3), we have

Fia=Wian)ma=Y T fi)+Biawies (29)

k=g

By assumption, ,'F,ﬁi) - jf-f) exists for f (k= 1,.--,m),
and the plane produced by B;_;w;.; expresses the cross
section of the i — 1-th friction cone. Since f,_; is ex-
pressed by a linear combination of f,{k =1i,---,m) and
Biyw;, f;{i); - ‘7:,(_2_}! exists. Therefore, by the mathe-
matical induction, }’,(cn c .7‘}?) exists for every k. Since
V) is expressed by a linear combination of ﬁ(ci)(i =
1,2,k=1,--+,m), V¥ C V@ is ensured. o

For example, let C(? and C® (C® C C®) be the origi-
nal and an approximated friction cones, respectively. This
relationship is illustrated in Fig.3(b). Also, let V) and
Vi) be the total force sets obtained under € and C{®),

respectively. Since C'® C C'*), Theorem 4 ensures a2

C V@ Now, let V! be a desired total force set where
a desired object’s motion is expected. If a set of torque

commands are chosen so that V() ¢ V@ yl) ¢ p@

is always guaranteed. This means that the total force set
under the original friction cone also produces a desired mo-
tion for the object. This nature is important for keeping a
sufficiency of manipulation of an enveloped object.

Now, the remaining questions are as follows:

(1) How to design V¥ ?

(2) How to determine a set of torque‘ commands so that

V&) € V) may be satisfied ?

3.5 Design of V@

For simplifying the discussion, we assume a single T-chain
whose contact points exist on the plane parpendicular to
the environment and includes the center of gravity of ob-
ject. We also assume that an object can support moments
around both = and 2 axes in Fig.5, while a rolling mo-
tion around y axes is allowed. These assumptions enable
us to focus on the object’s motion in z-z plane as shown
in Fig.5(b). Now, consider the space V¥ sandwiched by
planes I1; and Iz, where I1; and 1z are parallel to the en-
vironment and the right boundary of the friction cone at
the point of contact with environment, respectively. Math-
ematically, V9 is given by

V@ = v ay® (30)
V@ = {p|ci.p > 0} (31)

where p expresses an arbitrary point in VYV and o
denotes a unit vector indicating the normal direction of
I1,, as shown in Fig.5(b) and Fig.6{a). V() and V@ are
for making the object keep contact with the environment
and for producing slipping notion at the point of contact
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Figure 6: Relationship among V(}, V(#) and V(d)

with environment, respectively. If the total force set V(®)
(2 V@) is put in V(¥ there exists no total force that can
balance with a contact force within the friction cone be-
tween the object and environment. This means that the
object can not remain stationary and inevitably moves to-
ward -z direction while keeping contact with the environ-

“ment. Of course, in order to restrict the object’s motion

we can impart constraints more than two, by adding V®,
V@ ... VP a5 shown in Fig.6(b).

3.6 Determination of command torque
set T,

Let f, be the total force set produced by all T-chains. The
condition for putting all possible f, into a semi-infinite
region V(¥ is given by ¢4, f, > 0 or

¢« BV (I-ND7'S*)H'r 20 (32)
By taking all combinations among span vectors, we have
totally L™" inequalities for both ineq.(28) and (33).

For n T-chains, ineq.(28) and {33) can be rewritten in the
following form, respectively.

Ayr>0 {33)
AxT >0 (34)
where T = [14,..-,7L]", and A; and Az are coeffi-
cient matrices composed of § (I - N D“IS*) H" and
ct,EV (I ~ND™'S") H*, respectively. The common
space in ineq.(34), {35) and torque limitation provides the

torque space T,: ensuring the object’s motion along P-
chain.

Toi = {T|A:T >0 N T™" <7 < T™} (35)



where A; = A}, A%;]'. Tai provides the basic form when
determining the command torque set T..

[Theorem 5] Let D = V) n ... 0 VP be a polyhedral
convex cone whose top coincides with the center of gravity
of the object. A sufficient condition for producing the total
force set within D is given by

ﬂ)hcmTc =Ta1 N nTﬂP
{Proof] Omitted. 0

To find 2 set of command torque, we change torque step
by step and examine whether they satisfy the condition
(36) or not. We continue this procedure until we can find
at least ome solution. To efficiently reach a solution, we
change torque with a large step from the minimum to the
maximum values. If no solution, then the initial value is
shifted a bit and the same procedure is repeated. This way
is generally effective for reaching a solution in the possible
torque space. :

3.7 Simulation

Fig.7(a) shows an example of 2D model, where we as-
sume one T-chain and one P-chain. We discuss an is-
sue in which the object is moved from the initial po-
sition to the upper direction along the P-chain, where
| = 1[m},R = 0.3[m],mg = LO|N], /™" = 0.0{Nm)],
"% = 2.5[Nm], 75" = 0.0[Nm), 73"°* = 1.0[Nm] and
a = tan"'u = 20[deg]. A sufficient condition for achiev-
ing the requirement is equivalent to finding the torque
set enabling the total force set f, (including the gravi-
tational force) to produce into the hatched area, where
the boundaries given by £ and $; are for always mak-
ing the object contact with the P-chain and for break-
ing static frictional condition at the contact point be-
tween the object and the P-chain, respectively. To sat-

isfy the sufficient condition, two direction vectors Cq; and -

Caz are prepared as shown in Fig.7(a}, where €41 and Coz
are chosen so that ¢t t; = 0(¢ = 1,2). Giving Co1 and
Co2, wWe can obtain the command torque set as shown
in Fig.7(b), where T = Ta: N Taz. If we choose a set
of command torque from T, the object is guaranteed to
move upward along the P-chain. Fig.8(a) shows an ex-
ample of 3D model, where we assume two T-chains and
one P-chain. The problem is to obtain the torque set
enabling the object to move the upper direction, where
I = 1fm},R = 0.2[m],mg = LON], 7™ = 0.0[Nml,
™9 = 5 0[Nm] (i = 1, 2), and a = tan™ ' ¢t = 10{deg].

In the simulation, we approximate the friction cone by four
faced polybedral cone including the original cone. Fig.8(b)
shows the torque set enabling the object to move the des-
ignated direction.
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4 Experiments

To also confirm the idea, we have done a couple of experi-
ments by utilizing the Hiroshima-hand with the capability
of joint level torque control, where the basic mechanical
structure is precisely described in [14]. Fig.9 shows a se-
ries of experimental results, where the two right fingers are |
chosen as P-chains and the left one as a T-chain, and the .
slopes of P-chains are 60{deg] and 90[deg] in Fig.9 (a) and
{b), respectively. It can be seen from these figures that
a cylindrical object is lifted up along P-fingers not only
by sliding but also by rolling. We have also succeeded in
achieving more complicated motions including a switching
phase from one direction to another,

5 Concluding Remarks

We have shown a sufficient condition for locally manipulat-
ing an object in Envelope Family, by assigning all chains
into either T-chain or P-chain. It is important to note
that the sufficiency is preserved as far as an approximated
friction cone includes the original one. This allows us to
approximate each friction cone by a three-faced polyhe-
dral cone which is the polyhedral cone with the minimum
number of face. This is an advantageous feature, since it
contributes to finding a solution efficiently by reducing the
number of inequality set.



(a-3) (-3)

¢a) Slope with 60{deg) (b) Slope with 90(deg)

Figure 9: Experimental results

Finally, the authors would like to express their sincere
thanks to Mr. Tatsuya Shirai and Mr. Mitsushi Sawada
for their simulation and experimental works.
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Appendix (Proof of Theorem 2)

(1) For example, see [13]. (2) Consider C'=C14+ +Cp-1.
From (1), C’ is also a polyhedral convex set. Now, con-
sider three vectors &' € C’, &, € C,, and = € C where
T =2 +2%n. Let P', P, and P be points expressing
the tip of vectors, respectively. Suppose that P and P’
denote a vertex in C and a vertex in C', respectively. If
P, exists inside of C,., we can always make a small sphere
whose center is located at P, as shown in Fig.3. This
leads to a contradiction, since (=&’ +&y,) is assumed to
be a vertex in C. Therefore, P, should be a point on the
boundary of C,. Now, suppose that P, exists on either
a plane or an intersection between two planes forming the
boundary of C,. Due to & = &'+, P should also be
on a plane or a line instead of a vertex, which again lead
to a contradiction. Therefore, P, should be a vertex in
C.. These discussions prove the former part of (2). We
can easily find an example of convex set, where a vertex
of C',, corresponds to an inner point of C, which supports
the correctness of the later part of (2). 0



