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Abstract

This paper proposes a lraining sysiem based on
EMG signals for prosthetic control and the develop-
ment of its prototype. This sysiem aims to enhance
three kinds of conirol abilily: muscular coniraction,
cooperation among several muscles, and the timing of
EMG generation. For the EMG signal processing, a
statistical neural nelwork is used, which can adapt ii-
self to changes of the EMG pallerns according to the
differences among individuals. the different locations
of the electrodes, the time variation coused by faligue
or sweat, and so on. During the training, information
on the EMG signals is displayed in the feedback mon-
itor in order to support the traiming. The ezperiments
have been conducted using the prololype system. The
subject is a 51 year-old man who has had an ampu-
tated forearm since he was 13 years old. As the resulls
of training for five days, the ability to manipulaie the
EMG signal of the subject has been enhanced and the
effectiveness of this system is shown.

1 Introduction

Most handicapped people who have an amputated
upper limb use a prosthetic arm for a daily life. Un-
til now, many researchers have proposed the control
method of it using EMG signals. Waseda hand {1},
Boston arm (MIT) [2] and Utha artificial arm (USU)
[3] were the pioneers in this study. The EMG signals
accompanied by muscular coutraction involve much

useful information, such as the operator’s intended

motion, force level, and the mechanical impedance pa-
rameters of his or her limb. If the muscle which actu-
ated the original limb still remains after amputation,
the information on the intended motion can be esti-
mated through the EMG signals measured from them.
It is expected that a natural feeling of control similar
to that of the original limb is realized using EMG sig-
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nals.

Recently, the motion discrimination method which
used neural networks has been reported {4]-[8]. A
system which uses a neural network can adapt itself
to changes in the EMG signals, in accordance with
the difference among individuals, different locations
of the electrodes, time variation caused by fatigue or
sweat, and so on. The authors also have been study-
ing the motion discrimination using neural networks,
the EMG controlled prosthetic arm, and the human
supporting manipulator (6]-(3].

Although the techmology for the prosthetic arm
which uses the EMG signals has been developing grad-
ually, the EMG-controlled prosthetic limnb are seldom
used by the handicapped. There are two main reasons
for this situation: One is problems with the hardware
device, such as heavy weight -and loud motor noises.
The second problem deals with operator issues, such
as the physical strength, the lack of control experience
and training. It is necessary for handicapped people.
to be provided with rehabilitation and manipulation
training based on the EMG signals. ‘

Many studies about rehabilitation systems for the
handicapped using robotic and mechatronic technol-
ogy have been carried out [9]. The “Kokoro web”
which is the web site of the IBM Corp. introduces
many kinds of hardware/software for various dysfunc-
tions {10]. Tremendous potential exists in such ap-
proaches because the personal computer and Internet
service have become very popular.

On the other hand, a few education/training sys-
tems for prosthetic control have been reported, al-
though they are necessary in order to realize the pros-
thetic arm which has introduced advanced technology.
Dupont and Morin developed the control training sys-
tem for the prosthetic hand [11]. This system simu-
lates the EMG-controlled prosthetic hand and shows
its computer graphic model on a display. However, it
provides only the opening and closing training of the
prosthetic hand. Also, Kawamura Corp. developed
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Figure 1: Concept of the proposed system

the feedback equipment (Myotrainer) using the EMG
signals in order to support the selection of electrode
“locations and gaiu regulation of the EMG amplifier,
However, it is difficult for this equipment to be used
for rehabilitation training because its function is quite
simple.

This paper proposes a concept of a training system
based on the EMG signals for prosthetic control and

development of its prototype. In this system, the m-

formation on the EMG signals is displayed in the feed-
back monitor in order to support the training. Also
the prosthetic manipulator [8] is incorporated into the
system and used f{or the control training. The trainee
may improve his or her ability of the EMG generation
and the manipulation of the prosthetic arfy through
this training.

2 EMG based training system

Figure 1 shows the concept of the system. A num-
ber of electrodes are attached to a trainer. and the
information on the EMG signals measured from them
1s shown on the display. The training program 1= e
veloped based on the personal computer. thus 1t en-
ables the trainee to perform the interactive triuting
at home. An example of the training supperted by o
therapist is shown in Fig. 1.

The system cousists of the EMG signal processing
part, the training part, the database part and the pros-
thetic manipulator part as shown in Fig. 2. The EMQG
signal processing part extracts the information on the
muscle activity from the measured signals and discrim-
inates the intended motion from them. The trainee
performs the rehabilitation training based on this in-
formation. The results of the training are recorded in

Training programs
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\
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— |
r"
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Figure 2: Components of the prototype system

the database part. After the training, it is expected
that the trainee can control the prosthetic manipula-
tor using his or her EMG signals [8], where the end-
effector and the wrist joint of the manipulator are con-
trolled using the EMG signals.

2.1 EMG signal processing part

The structure of the EMG signal processor is shown
in Fig.- 3. This extracts the EMG information and
discriminates the trainee’s intended motions.

2.1.1  Extraction of the EMG information

Here, three kinds of EMG information are extracted.
The first is the information on muscular contraction.
In this paper, the EMG signals are rectified and fil-
tered out through the analogue electric circuit, and
the amplitude level of these signals are used as the

~muscular contraction information. The second is in-

formation on cooperation among several muscles. This
is necessary for training becanse most human motions
are realized by cooperation of several muscles. The
third is information on the timing of the EMG gen-.
eration. To perform several motions smoothly, this
information is important. These three types of infor-
mation are used for the training.

First, the EMG signals measured from L pairs of
electrodes (Web5000: NIHON KOHDEN Corp.) are
rectified and filtered out through the second-order
Butterworth filter (cut-off frequency : 1 {Hz], UAF42,
BURR-BROWN Corp.}, and they are digitized by
an A/D converter {(sampling frequency, 60 [Hz]; and
quantization, 12 [bits]). These sampled signals are de-
fined as EMGi(n) (: = 1,---,L), and the following
equation is calculated:
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Figure 3: Structure of the EMG signal processor ‘

L B}
1 & EMGi(n) -~ EMGY
)= 7 4 EMGp® ~ EMG™’ )

where EMGY, EMGT{® are the mean values of
EMG;(n) while relaxing the arm and keeping the max-
imum voluntary contraction (MVC), respectively. The
- cp{n} indicates the ratio of the muscular contraction
level when performing the motion k to the MVC. This
ratio is defined as the information of the muscular con-
traction level.

Next, EMG;{n) are normalized to make the sum of
L chaanels equal 1:

EMGi(n) — EMGS

zi(n) = = : (2)
> (EMGu(n)— EMGY

fim]

2;{n) indicates the ratic of the muscle activa-
tion under the kth electrode to the sum of all
muscle activation. The feature vector z(n) =
[z1(n), 22(2),- -, z2(n)]T € RL is defined as the co-
operation information and used for the input vector
of the neural network in order to discriminate the
trainee’s intended motion.

Also, the square sum of the EMG signals is calen-
lated as follows:

L
s(n) = 3 (EMGi(n) ~ EMGE*)’. (3)
f=1
This value is used for the detection of a motion: When

s{n) is over the prespecified threshold, it is determined
that a motion has occurred.

2.1.2 EMG pattern discrimination!®

Next, the log-linearized Gaussian mixture network
(LLGMN) proposed by Tsuji et al. [13] is used for
the EMG pattern discrimination. The LLGMN can
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acquire the log-linearized Gaussian mixture model
through learning and calculate the posteriori proba-
bility of the trainee’s intended motion based on this
model. The probability density function is expressed
by the weightéd sum of the Gaussian components. It
enables the LLGMN to learn the complicated mapping
between the trainee’s EMG patterns and motions.

Before starting the use of the proposed system, the
EMG pattern vectors ®{n) are measured and used for
the learning. It should be noted that the dynamics of
a terminal attractor is incorporated into the learning.
rule in order to regulate the convergence time {8]. The
convergence time is always less than the prespecified

" upper limit so that the mental stress of the trainee

waitiag for the convergence of learning can be reduced.

The unit of the third layer outputs the posteriori
probability of each motion. The trainee’s intended
motion can be determined according to Bayes’ rule.
Also, in order to reduce ill-discrimination, the en-
tropy H{n) is calculated and used for a motion sus-
pension rule {7]. The entropy indicates, or may be in-
terpreted as, a risk of ill-discrimination. The possible
ill-discriminations are expected to be reduced using
this rule.

2.2 Training part

In order to improve the muscle ability of the trainee,
the training programs using the EMG signals are pre-
pared. The training is composed of three types: (1)
muscular contraction, (2) cooperation among several
muscles, and (3) timing of EMG generation. FEach
training has two modes: One is a voluntary mode in
which the training is executed freely depending on the
intention of the irainee, and the other an instruction
mode in which the system instructs the trainee to ex-
ecute the desired task. In both modes, the interac-
tive training can be performed much like a computer -
game. The parameters such as the number of mo-
tions, the difficulty of task, and the training time can
be changed according to the dysfunction.
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Figure 4: Feedback display for the muscular contrac-
tion tralning

2.2.1 Muscular contraction training

In this training, the trainee tries to regulate the mus-
cular contraction level while monitoring the informa-
tion ax(t) which is extracted in the EMG signal pro-
cessor. During a trial, the system instructs the trainee
to keep ascertain muscular contraction level and eval-
uates its achievement. The muscular ability of the
trainee can be improved through this training.
Figure 4 is an example of the screen image immedi-
_ately after the trial. The desired motion “Extension”
is shown on the top of the screen, and the time history
of the information ax(t) is shown on the right half.
The band-shape area indicates the range of the de-
sired contraction level: the trainee tries to keep « (1)
in this range during a trial. The duration of one trial
is about 10 seconds. The first several seconds are for

preparation and the remainder is for evaluation. The .

left bars show the score and the current value of ar(t).
The ratio of “the total time which the contraction level
ax(t) was kept in the desired range” to “the evaluation
time” is used to define the score for the trial, where
the maximum value is 100. Also, the remaining time
and the total score are displayed on the bottom of the
screen.

2.2.2 Cooperation training

The trainee has to use several muscles in order to
perform the desired motion in this training. Be-
fore the training, the cooperation information z(n)
is extracted from the trainee, then the LLGMN is
trained to learn the mapping between z(n) and the
trainee’s motions. During trials, the system instructs
the trainee to perform the desired motion and calcu-
lates the cooperation information z{n). The ability to
control several muscles is evaluated from the discrim-
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Figure 5: Feedback display for the cooperation train-
ing ' :
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Figure 6: Feedback display for the timing training

ination results of the LLGMN.

Figure 5 shows an example of the screen image.
The desired motion and the cooperation information
are displayed at the top and the center of the screen,
respectively. As the cooperation information, two pat-
terns are shown: One is measured in real time, and
the other measured before training. The trainee has
to control muscles to make these cooperation patterns
equal. The bars on the right are the output of the LL-
GMN corresponding to the posteriori probability of
each motion. The intended motion (Grasp) is success-
fully discriminated in this case and displayed under
the cooperation information. The left bar shows the
score.

2.2.3 Timing training

The trainee tries to perform the desired motion
with right timing. The smoothness of swiching the
motions may be improved through this training. Dur-
ing the training, the system instructs the desired mo-
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Figure T: Changes of EMG signals during the training

tion and its timing, and discriminates the intended
motion from the measured pattern x(n) using the
trained LLGMN. The ability of timing control is eval-
uated from the discrimination result. .

In the training, the time schedule of the desired
motions is displayed as shown in Fig. 6. The trainee
must execute the motions according to this schedule.
The five indicator lamps located near the bottom left-
hand corner light up in the order from left to right,
and the motion discrimination is carried out when the
one furthest right lights up. A series of the desired
motions and the discrimination results are plotted side
by side in the time schedule, and the numbers of its
accumulation are shown in the right table. The score
. increases when the discrimination result agrees with
the desired motion. The total score and the comment
from the system are displayed at the bottom of the
screen,

3 Experiments

The experiments were conducted for 5 days using .
the prototype system. The subject was a 51 year-
old man whose forearm was amputated when he was
18 years old. He has never used the EMG controlled
hand and usually uses a cosmetic hand. The training
time takes about 1.5 hours for each day, and a physical
therapist supports the training. Six pairs of electrodes
were used: Four pairs of electrodes are attached to
the forearm and two pairs at the upper arm. Their

133

locations are identical throughout the entire period of
the experiment. On the last day, the trainee tried to
control the prosthetic manipulator.

3.1 Changes of the EMG signals

The changes of the EMG signals are examined dur-
ing 5 days. The examples of the EMG signals are
shown in Fig. 7, where the signals were measured just
after the training on () the first day and (b) the fifth
day. In the figures, the EMG signals, the square sum
of EMG(n), the Entropy H(n) and the discrimina-
tion results are shown, while the trainee performed 6
motions continuously. The discrimination results are
improved through the training. The entropy H(n) in
Fig. 7(b) is smaller than the one in (a). This means
that the discrimination becomes clear.

The amplitude level of the EMG signals are also
changed. Especially, the channels 1, 2 and 4 extracted
from the forearm shows considerable changes. It can
be seen that the discrimination ability of the trainee
was improved during the training. ‘

3.2 Example of the manipulator control

The control experiment of the prosthetic manipu-
lator was conducted on the last day. Figure 8 shows
a series of the photos during the experiment. The
trainee received the object from the therapist (Fig.
8(a)), then he performed some motions ({(b)-(e)) and
returned it again ((f)). No ill-discrimination were ob-
served, and all motions were performed smoothly. It
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an amputee

took about 16 [sec], and the timne is noted on each pic-
ture. The experimental results certify that the control
ability of the trainee improved through the use of this
system.

4 Conclusion

This paper proposes a concept of a training system
based on the EMG signals for prosthetic control and
the development of its prototype. This system aims to
enhance the trainee’s ability to control his or her EMG
signals. The experiments have been conducted using
the prototype system. As the resulis of training for
five days, the ability of the subject to control the EMG
signals has been enhanced, and the effectiveness of this
system is shown. In the future, we wish to conduct the
experiment with many subjects in order to make the
effectiveness and the problems of this system clear.
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