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Abstract

This paper propeses a concepl of an EMG-Based
Rehabilitation Aid for prosthetic control and develops
its prototype. The proposed system provides the EMG-
based rehabilitation iraining for the physically handi-
_ capped in order to improve. his or her muscle abilily.
Also the trainee can practice conirolling a manipulator
which is a part of this system using the EMG signal.

In the protoiype system, three kinds of information
are exiracted from the measured EMG signal and used
for rehabilitation training and prosthetic conirol. The
EMG patiern discrimination method using the neural
-network is utilized as an essential technique of our sys-
tem.

1 Introduction

Precise and complex motions may be very difficult
for the physically handicapped who have lost their ma-
nipulation capability of the upper limb by traffic ac-
cident, cerebral apoplexy, or other afflictions. There-
fore, the development of prosthetic systems is neces-
sary to support their daily life and enable them to
achieve social integration.

Many prosthetic arms have been developed for am-
putees since. the 1970’s {1], [2], and many intelligent
robots have been designed for power assistance, reha-
_ bilitation and other aids using modern techniques of
robotics [3], [4]. »

In the prosthetic systems, an EMG signal has been
often used as a manipulated signal in previous studies.
The EMG signal accompanied by muscular contrac-
tion involves information on an operator’s intended
motion since every motion of a human operator is re-
alized by muscular contraction controlled by the cen-
tral nervous system (CNS). If the CNS and a part ‘of
the musclés which actuate the original limb still re-
- main after amputation, the information on the oper-
. ator’s intended motion can be estimated through the
EMG signals measured from his or her muscles. It is
expected that a natural feeling of control similar to

that of the original imb is realized using EMG sig-
nals. Graupe et al. reported on the discrimination
of the EMG signal measured from one pair of elec-
trodes using the autoregressive (AR) model [5]. Also,
we have already proposed an EMG controlled robotic
manipulator using neural networks and suggested its
possible use as a human support robot [6], [7] .

At present, however, most amputees do not use
these EMG based prosthetic arms. The main reason
for this situation may involve not only hardware prob-
lems such as heavy weight and motor noises, but also
software problems such as the lack of training pro-
grams for operation and rehabilitation of muscle abil-
ities of each user.

On the other hand, some investigations on biofeed-
back have been carried out in order to recover the
patient’s dysfunction. Biofeedback shows the infor-
mation on the patient’s body condition through visual
and auditory senses and is used as a medical treatment
for the handicapped. It is effective and essential for
the muscular dystrophy patient, who cannot control

the muscular contraction and cooperation voluntarily,

to activate biofeedback using the information on his
or her EMG signal [8]. The above mentioned facts
indicate-that the prosthetic system should be totally
re-designed from the view point of not only hardware
but software for rehabilitation training.

In this paper, the concept of an EMG-Based Reha-
bilitation Aid for prosthetic control is proposed and
its prototype is déveloped. The proposed system can
provide the EMG-based rehabilitation training for the
physically handicapped in order to improve his or her -
muscle ability. Also the trainee can practice control-
ling a manipulator which is a part of this system using
the EMG signal.

The paper is organized as follows: The components
of the proposed system are described in Section 2. The
rehabilitation training methods are explained in Sec-
tion 3, and the experiments are conducted in Section

4. Finally, Section § concludes the paper..
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Figure 1: Concept of the EMG-Based Rehabilitation
Aid.

2 EMG-Based Rehabilitation Aid

Figure 1 shows the concept of the EMG-Based Re-
habilitation Aid (EBRA). The proposed system pro-
vides EMG-based rehabilitation training for the phys-
ically handicapped in order to improve his or her mus-
cle ability. The delicate muscle activities can be ob-
served clearly using the EMG signal measured from
the surface electrodes, so that an effective rehabilita-
tion training can be carried out for the trainee who

has a serious dysfunction of the limbs. Also, this re-

habilitation training can be applied to manipulation
training of the EMG-controlled robotic manipulator.
This training is executed according to the therapist’s
diagnosis or the computer program.

After the training, the trainee can control the ma-
nipulator placed on the table using the EMG signal.
The manipulator is compact and suitable for use in
the home environment, so that physical and mental
sttess may not increase even if the trainee uses it for
a long time. C

Figure 2 shows the components of the developed
prototype system which consists of the EMG signal
processor, the biofeedback display, the database for
rehabilitation training and the rqbc;tic manipulator.
The EMG signal processor extracts the information
of the measured EMG signals, and discriminates the
trainee’s intended motion. During the rehabilitation
training, the biofeedback display provides information
on the current status of the muscles to the trainee in
order to improve his or her physical strength. The
rehabilitation programs and medical records are put
together into the database. Also, the robotic manipu-
lator is controlled according to the discrimination re-
sult. The details of each technique are described in
the following subsections.

Robotic |

B
: Rehuhilimdon programs 1
: and
Megdical records

Pogition sensor

\_{ Robotic manipurator

Figure 2: Components of the prototype system.

2.1 EMG signal processor

The Structure of the EMG signal processor is shown
in Fig. 3. This processor is the essential part of the
proposed system. This processor extracts three kinds
of information of the measured EMG signals, and dis-

criminates the trainee’s intended motion. These in-

formation and discrimination results are used for the
rehabilitation training and manipulator control.

2.1.1 Extraction of motion information from
EMG signal

During the training, three kinds of information are
extracted from the measured EMG signal in order to
examine the trainee’s muscle activity. The first is force
information. In this paper, we assume that the am-
plitude level of the EMG signal changes in proportion
to muscle force, and the system uses the amplitude of
EMG as the force information. The second is cooper-.
ation information of the EMG signals measured from
multiple electrodes. Most of human motions are re-
alized by cooperation of multiple muscles. Therefore,
in order to increase the motion control ability of the
trainee, the cooperation of muscles should be trained
using this information. The third is the information of
the beginning of the motions. For smooth motions, it
is important not only to control the muscular strength
and the cooperation of muscles but also to control the
timing of the muscular contraction. -
First, the EMG signals measured from L pairs of
electrodes (Web5000: NIHON KOHDEN Corp.) are
rectified .and filtered out through the second-order
Butterworth filter (Cut-off frequency : 1 [Hz], UAP42,
BURR-BROWN Corp.), and they are digitized by an
A/D converter (sampling frequency, 500 [Hz]; and
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Figure 3: Structure of the EMG signal processor.

quanti‘zation 12 [bits]). This sampled signal is de-
fined as fi(t) ({ = 1,---,L), and used as the force
information. The begmmngs of the motions can be
recognized using this signal. Then f;(t) is normalized
every T =10 samples (0.02 [s]). to make the sum of L
channels equal 1:

Y. O -

=n-T+41
Cf(n) = Lt = n+ ¥ (1)

Y (-

Pzl t=n-T41

where f7* is the mean value of f;(t) while relaxing the
arm. c(n) = [cl(n).cz(2)‘.~-,cL(n)]T € RL expresses
the cooperation information of muscles, and is used as
the feature input vector of the LLGMN.

2.1.2 EMG pattern discrimination

In the proposed system, the trainee’s intended mo-
tions are discriminated using the feature input vector
¢(n), and the discrimination results are used for re-
habilitation and manipulstion training. In the EMG
signal processor, the log-linearized Gaussian mixture
network (LLGMN) proposed by Tsuji et al. [9] is
used for the EMG pattern discrimination. The LL-
GMN can acquire the Log-Linearized Gaussian Mix-
ture Model through the learning, and calculate the
posteriori probability of the trainee’s motion based
on this' model. In this model, the probability den-
sity function is expressed by the weighted sum of the
Gaussian components. It enables the LLGMN to learn
the complicated mapping between the trainee’s EMG.
pattern and the corresponding motion. The LLGMN
can adapt itself to changes of the EMG patterns ac-
cording to the difference among individuals, different

locations of the electrodes, time variation caused by
fatigue or sweat, and so on. Also the number of the
electrodes and the trainee’s motions can be settled ar-
bitrarily.

First, the input vector ¢(n) € RY is preprocessed
and converted into the modified input vector C{n) €
R as follows:

C(n) = [Le(n)T,c1(n)? ci(n)ea(n), -,
(51 (‘n)cL(n), c?(”)zs 82(n)63(ﬂ),
T :Cz(n)cL(ﬂ), e )CL(n)z}T' (2)

The first layer of the LLGMN consists of H =
14 L{L + 3)/2 units corresponding to the dimension
of C(n), and the identity function is used for an out-
put function of each unit. The second layer consists
of the same number of units as the total number of
the components used in the Gaussian Mixture Model
[9]. Each unit receives the output of the first layer
weighted by the coefficient w(k ™) and outputs the pos-
teriori probability of each component The input to
the unit {k,m} in the second layer, VI, m{n), and
the output, (2O ,(n), are defined as

H
(2)Ik,m(n) = Z (l)oh(n)w’(‘k.m)’ (3)
hz=1

1

(2}01: m(n) "

z Z exp( )I},l m(n)— (2)11: (")]

P=1mi=1
(4)
where wiM*) = g (h=1,.-, H). It should be noted
that (4) can be considered as a kind of generalized sig-
moid function. The third layer consists of K units cor-
responding to the number of motions and outputs the
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posteriori probability of the motion k (k=1 K).
The unit £ integrates the outpuis of M, units {k,m}

(m=1,---, Mi) in the second layer. The relationship
between the input and the output is defined as

M,

(S}Ik(n) = Z(:’)Ok,m(n); (5)
m=1 .

Ye(n) = (3)13(71). (6)

Finally, in the discrimination part, the trainee’s in-
‘tended motion is determined according to Bayes’ rule.
During the operation, the sum of the squared fi(t) is
used in order to recognize the beginning of the mo-
tions and regulate the driving speed or grip force of
the manipulator.

The proposed system requires the adaptation to the
trainee, because the EMG signal patterns are differ-
ent among individuals and change depending on the
electrical impedance of the skin, electrode locations,
and time variation caused by fatigue or sweat, and so

on. In order to adapt to the change of the character-

istics of EMG signals, before starting the use of the
proposed system, the EMG pattern vectors ¢(n) for
forearm motions of the trainee are measured. These
measurements are used for the learning, and learning
procedures are carried out using the LLGMN [7]. It
should be noted that the dynamics of a terminal at-
tractor [10] is incorporated .into the learning rule in
order to regulate the convergence time. The conver-
gence time is always less than the prespecified upper
limit so that the mental stress of the trainee waiting
for the convergence of learning may be reduced.

The proposed system has to be reliable for hu-
" man use. Therefore, in order to reduce the ill-
disctimination, we calculate the entropy H{n) defined
as

K
H(n) = -3 Ya(m)logy Ya(n),  (7)
k=1
and use it for a motion suspension rule, because the
entropy indicates, or may be interpreted as, a risk
of ill-discrimination. For exarfxple, if the entropy is
over the determination threshold 84, the determina-
tion should be suspended since large entropy means
that the network output is ambiguous. Thus, possible
ill-discriminations are expected to be reduced.

2.2 Biofeedback display for rehabilitation
training

The trainee can improve his or her physical strength

through voluntary and interactive training. During

the training, the information on the EMG signals

extracted by the EMG signal processor is presented
through the biofeedback. The 3D computer graphics

of the virtual manipulator is provided and used for
the control training. The score and messages which
depend on the aceomplishment of the training are
shown on the biofeedback display. Also, the tests
for muscular strength are prepared in order to exam-
ine the improvement of the trainee’s physical ability
through training. These processes are performed ac-
cording to the trainee’s intention or the therapist’s
diagnosis, and the results of the tests are put together
into a database. The rehabilitation program can then
be modified by the therapist’s diagnosis based on this
database.

2.3 EMG controlled robotic manipulator

The robotic manipulator consist of the arm part
(Move Master RM-501 : Mitsubishi electric, Corp.)
and the end-effector part {Imasen lab.) {11}, and has
three degrees of freedom in each part. The arm part
is controlled according to the position of the trainee’s
wrist joint measured by the 3D position sensor (ISO- .
TRACK II : POLHEMUS, Inc.). This device uses the
information on the electromagnetic fields to determine
its 3D position. The static measurement accuracy is
+ 2.4 [mm] for the x, y or z coordinates. This device
allows the trainee to take an arbitrary position hav-
ing no occlusion problem. The trainee’s wrist posi-
tion is measured with the sampling frequency 50 [Hz],
and the joint angles of the arm part are calculated us-
ing this position. The correspondence of the trainee’s

" wrist position with the arm’s enables the trainee to

control the manipulator intuitively [7]. The end-
effector part is controlled according to the information
on the EMG signals. Its driving speed and grip force
depend on the squared sum of f;(t).

3 Rehabilitation training
Rehabilitation training adopted in the proposed

_system is composed of four training as explained in the
-following subsections. First three training are corre-

sponding to three kinds of information extracted from
the EMG signal, and the last one is for controlling the
EMG-based robotic manipulator.

3.1 Force control training

In' this training, the trainee controls the muscular
contraction level based on the force information, f;(t),
extracted from the measured EMG signal.

At the beginning of the training, the trainee’s max-
imum voluntary muscle force is examined. Then the
maximum amplitude of the desired signal is deter-
mined on the basis of this value. The trainee controls
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Figure 4: Electrode locations.

his or her EMG signal in such a way that the extracted
force from the EMG follows the desired signal.

3.2 Cooperation training

The trainee’s intended motions are realized by co-
operation of muscles. In this cooperation-training, the
trainee practices controlling the contraction level of
each muscle in order to realize the desired motions.

Before the training, a set of the desired motions are
selected, and the corresponding coopération patterns
of the EMG signals measured by the multiple elec-
trodes are sampled and learned using the LLGMN.
After learning, the trainee is instructed to perform
one of the desired motions, then the measured coop-
eration information ¢(n) are discriminated using the
LLGMN. The cooperation ability of the trainee’s mus-
cles can be evaluated by the pattern discrimination
results. During the training, the measured coopera-
tion information c(n) and the discriminated motion
are presented on the display as the biofeedback with
the desired motion and the corresponding desired co-
operation pattern.

The desired motions-usually correspond to the func-
tions of the prosthetic hands. However, it may be very
difficult for the trainee who has a serious dysfunction
of his or her limbs to perform ail the motions. In
this case, a few possible motions are selected by the
therapist, and the number of the motions is gradually
increased according to the results of training.

3.3 Timing control training

For smooth motions, it is also. important to con-
trol the timing of the muscular contraction. Timing
control training is carried out in order to practice con-
trolling the timing of the muscular contraction.

During the training, the diagram of the time course
of the desired forces or the desired motions is shown
on the biofeedback display. The trainee is instructed
to control his or her muscular contraction according to
the pre-specified timing shown in this diagram. Note
that the beginning of the muscle contraction is deter-
mined using the threshold of the squared sum of the

g
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Figure 5: An example of the robot control.

force information f;(t).

3.4 Virtual manipulator control training

To master the manipulation of the EMG-based
robotic manipulator is one of the most important goals
of the proposed training system. If the trainee can
control the manipulator as he or she wants, the ma-
nipulator is very useful in order to support his or her
daily life. -

However, it is not safe for inexperienced trainees to
perform the manipulation training for a real manipula-
tor system, so the proposed system provides the train-
ing using a virtual manipulator which is constructed
by 3D computer graphics.

During the manipulation training, the 3D image of
the manipulator and the EMG information such as
force and cooperation are shown on the biofeedback
display.

4 Experiments
4.1 Example of the prosthetic control

We have conducted experiments to demonstrate
and verify the proposed method. Six pairs of surface
electrodes (L = 6) were attached to the forearm and
upper arm of the subject as shown in Fig. 4. The
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{a} Force training (b} Cooperation training

{d) Virtual manipulator

" {¢) Training diagram

Figure 6: Examples of the biofeedback training.

subject is a student: Male, age 27, normal. The de-
termination threshold was settled as #; = 0.55, and
the number of the learning data was N = 80 (8 mo-
tions, 10 data for each motion).

Figure 5 shows the discrimination results by the
EMG signal processor. In the figure, the motion
pictures, EMG signals, squared sum of f;(t) for all

channels, entropy H(n) and the discrimination re-

“sults are shown. In this experiment, the EMG pat-
terns are discriminated with high accuracy, and the
ill-discrimination can be avoided using the motion sus-
pension rule.

4.2 Example of the biofeedback training

Figure 6 shows examples of the biofeedback during
the rehabilitation training.

Figure 6 (a) is a biofeedback display during the
force control training. In this figure, both the desired
and current force information, fi(t), are shown. Dur-
ing the cooperation training, the radar chart of the

cooperation information is presented as shown in Fig.

6 (b). In this case, six pairs of electrodes are used,
and the muscle contraction level of each muscle is in-
dicated in each axis. The training diagram which in-
dicates the desired motion and timing of its execuiion

is shown in Fig. 6 (c). The trainee tries to perform’

the desired motion according to the pre-specified tim-
ing shown in this diagram. Also, in Fig. 6 (d), the 3D
computer graphic virtual manipulator is shown. This
screen image is updated every 200 [msec].

5 Conclusion

‘This paper has proposed the concept of the EMG-
Based Rehabilitation Aid for prosthetic control and
developed the prototype. The proposed system pro-
vides the EMG-based rehabilitation training for the
physically handicapped in order to improve his or her
muscle ability.

Future research will be directed at conducting an
experiment for an amputee using the proposed system.

Also we would further like to extend the usefulness of .
our system using Internet protocol.
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