Proceedings of the 1998 IEEE
International Conference on Robotics & Automation
Leuven, Belgium « May 1998

EMG-based Human-Robot Interface for Rehabilitation Aid

Osamu FUKUDA 1, Toshio TSUJI {, Akira Ohtsuka { and Makoto KANEKO 1
1 Industrial and Systems Engineering, Hiroshima University,
Higashi-Hiroshima, 739 Japan
t Department of Physxcai Therapy, Hiroshima Prefectural College of Health and Welfare,
Mihara, 723 Japan

Abstract

This paper proposes the concept of a human-robot
inlerface as rehabilitation aid and develops the proio-
type system. The prototype system aims {o be used as
a controller for the robotic manipulator and as reha-
bilitation system for the handicapped person. In order
1o adapt the system 1o the characteristics of the opera-
tor’s electromyogram (EMG) signal, the EMG patlern
discrimination method using the neural network is uti-
lized as an essential technique of our system. In the
experiments, il can be seen thai the robotic manipu-
lator can be controlled with high accuracy using the
operator’s EMG signal, and that the adaptive learn-
tng of the neural network improves the discrimination
ability of the EMG signal. The rehabilitation program
and biofeedback are also discussed.

1 Introduction

Precise and complex motions may be very difficult
for handicapped people who have lost their. manip-
ulation capability of the upper limb by traffic acci-
dent, cerebral apoplexy, or other afflictions. For these
people, various interface systems and prosthetics have
been proposed in order to support their daily life and
enable them to achieve social integration.

" Many prosthetic arms have been developed for am-
putees since the 1970’s [1], [2], and intelligent robots
are being designed for power assistance, rehabilitation
and other aid using modern techniques of robotics,
such as sensor technology and control method {3].
For example, Wu proposed neuromuscular-like control
based on muscle-reflex to develop rehabilitation robot
which assists the operator’s limb motion {4].

In order to design the human-robot interface, a
bioelectric signal was used as a manipulated variable
in several previous studies. For example, the EMG
accompanied by muscular contraction involves infor-
mation on an operator’s intended motion since every
motion of a human operator is realized by muscular
contraction controlled by the central nervous system
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(CNS). If the CNS and a part of the muscles which ac-
tuate the original limb still remain after amputation,
the information on the operator’s intended motion can
be estimated through the EMG signals measured from
his/her muscles. It is expected that a natural feeling
of control similar to that of the original limb is realized
using EMG signals.

Graupe et al. reported on the discrimination of
the EMG signal measured from one pair of electrodes
using the autoregressive (AR) model [5]. On the other
hand, a back propagation neural network was used
by Hiraiwa et al. to predict two Japanese syllables.
In their research, the non-averaged single trial multi-
channel EEG data recorded priof to the utterance was
used [6]. Also, we have already proposed an EMG
controlled robotic manipulator using neural networks
and suggested its possible use as a human support
robot [7]. ‘

At present, however, the problem of designing these
interfaces has not yet been solved because most am-
putees do not use these EMG based interfaces, pros-
thetic arms, rehabilitation robots or other aids. The
main reason for this situation may involve not only
hardware problems such as heavy weight and motor
noises, but also software problems such as easy oper-
ation and rehabilitation training.

On the other hand, some investigations on biofeed-
back have been carried out in order to recover the
patient’s dysfunction. Biofeedback shows the infor-
mation on the patient’s body condition through visual
and auditory senses and is used as a medical treatment
for the handicapped person. It is effective and essen-
tial for the muscular dystrophy patient, who can not
control the muscular contraction and cooperation vol-
untarily, to activate biofeedback using the information
on his/her EMG signal [8]. The above mentioned facts
indicate that the design of the human-robot interface
requires the total re-design of the system including not
only the hardware but software for easy operation and
rehabilitation training,.
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- Figure 1: Concept of the EMG-based human-tobot
interface for rehabilitation aid.

Inn this paper. the concept of a new human-robot in-
terface for rehabilitation aid is proposed and the pro-
‘totype system is developed. The prototype system
aims to be used as a controller of the robotic manipu-
lator and as rehabilitation system for the handicapped
person. This system can adapt itself to the operator’s
characteristics using the neural network. :

This paper is organized as follows : ‘The concept
and structure of the proposed interface is described in
Section 1 and 2. The EMG signal processor, robotic
manipulator and rehabilitation training method are
explained in detail in Section 3, 4 and 5, respectively.
The experiments are conducted in Section 6. Finally,
Section 7 concludes the paper. '

2 EMG-based human-robot interface

Figure 1 shows the concept of the EMG-based
human-robot interface for rehabilitation aid. This sys-
tem has two functions. The first is a control function
of the robotic manipulator. The operator can con-
trol the manipulator placed on the table using his/her
EMG signal. The manipulator is compact and suit-
able for use in the home environment so that physical
and mental stress may not increase, even if the op-
erator uses it for a long time. The other is the ma-

nipulation and rehabilitation training function for the:

handicapped person. The handicapped person can im-
prove his/her physical strength through voluntary or
interactive training using this system.

Figure 2 shows the structure of the developed proto-
type.system which consists of the EMG signal proces-
sor, robotic manipulator, rehabilitation program and
biofeedback.. The EMG signal processor discriminates
the operator’s intended motion and force information
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Figure 2: Structure of the prototype system.

from his/her EMG signal. Then, the robotic manipu-
lator is controlled according to this discrimination re-
sult. Also, rehabilitation program and biofeedback are
provided to the operator in order to improve his/her
physical strength. The statistical neural network is in-
corporated into the EMG signal processor so that the
system can adapt itself to the characteristics of the
operator. The details of each technique are described

N

in the following sections.

'3 EMG signal processor

The EMG signal processor is the essential part of
the proposed system. This processor extracts a feature
pattern and amplitude information on the EMG sig~
nals measured from the electrodes, then discriminates
the operator’s intended motion and force information.
This discrimination result is used for the manipula-
tor control and rehabilitation training. In this proces-
sor, the log-linearized Gaussian mixture network (LL-
GMN) proposed by Tsuji et al. [9] is used for the EMG
pattern discrimination. The LLGMN can acquire the
Log-Linearized Gaussian Mixture Model through the

~ learning, and calculate the posteriori probability of

the operator’s metion based on this model. - In this
model, the probability density function is expressed
by the weighted sum of the Gaussian components. It
enables the LLGMN to learn the complicated map-
ping between the operator’s EMG pattern and mo-
tion. The LLGMN can adapt itself to changes of the
EMG patterns according to the difference among in-
dividuals, different locations of the electrodes, time
variation caused by fatigue or sweat, and so on. Also

3493



Muscle force

J_ ‘ 5]
Electrodes ‘ [ xi(m) A A é
0 o G o 12
g g
9 I

2 jxe(n)
EMG Signals 3

4 ™

Forearm motions

S
AN /

[ Discrimination Rule I
1
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the number of the electrodes, and kinds of the opera-
- tor’s motions can be settled arbitrarily.
3.1 Discrimination of the EMG signal
The Structure of the EMG signal processor is shown
in Fig. 3. First, the EMG signal measured from L
pairs of electrodes (NTHON KOHDEN Corp.) is dig-
itized by an A/D converter {sampling frequency, 200
[Hz]: and quantization, 12 [bits]) , and it is rectified
and filtered out through the first-order Butterworth
filter (Cut-off frequency : 1 [Hz]). These measured
signals, defined as EMG;(t) {({ = 1,---,L), are nor-
malized every T = 10 samples (0.05 [s]) to make the
sum of L channels equal 1:

> (EMGi(t) - EMGY)
t=n—-T<+1

2 Zn: (EMGu(t) — EMG})

f=11=n=T4+1

zi(n) =

=100, (1)

where EMG3* is the mean value of EMG;(t) while re-
laxing the arm. The LLGMN uses z;(n}{i=1,---,L)
as an element of the n-th input vector z(n) € R for
‘the pattern discrimination. '

Then, the input vector z(n) € RE is preprocessed
and converted into the modified mput vector X{n) €
R as follows:

[1=(m)T, 1‘1(")‘2@1(");2(”), e
I}_(R)Q?L(n}, .’82'(71)2, 2}2{?1)273(71),
- za(n)zr(n), -,z (n)’]T. (2)

The first layer consists of H = 1+ L{L +3)/2 units
_corresponding to the dimension of X (n), and the iden-
tity function is used for an output function of each
unit. The second layer consists of the same number of
"units as the total number of the components used in

X(n) -

the Gaussian Mixture Model [9]. Each unit receives
the output of the first layer weighted by the coefficient
wgk’m) and outputs the posteriori probability of each
component. The input to the unit {k, m} in the sec-
ond layer, {*'I; .,(n), and the output, 20y m(n) are
defined as

Ik . ﬂ) Z(l)oh(n) Ak, m)’ , (3)
2 — _exp[® i m(n)] X
( )Ok,m(n) e (4)
> 2 ey m'(n)}
E=1mi=1
where w%K’M") =0(h=1,---, H)‘ It should be noted'

that (4) can be considered as a kind of generalized sig-
moid function. The third layer consists of K units cor-
responding to the number of motions-and outputs the
posteriori probability of the motion k (k= 1,---, K).
The unit & integrates the outputs of My umts {k,m}
{m=1,---, M} in the second layer. The relationship
between the input and the output is defined as

Bifk .
{S}Ik{‘n) = Z(E)Ok,m‘_{n)t - {5)
: m=1 '
Yi(n) = OLn). - . (8

Finally, in the discrimination part, the forearm mo-
tion is decided according to the Bayes! rule. Dur-
ing the operation, also the amplitude information on'
the EMG signals, which is the sum of the squared
zi(n)}(i = 1,.--L), is used in order to recognize the
beginning of the forearm motions and select the driv-
ing speed or grip force out of four possible levels (0.1,
0.2, 0.3, 0.4[m/sec] or 0.0, 20.0, 70.0, 120. O[N})

3.2 Adaptwe learning

The human-robot interface requires the adaptation '
to the human operator, because the EMG signal pat-
terns are different among individuals, and electrical
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impedance of the skin, electrode locations, and time
variation caused by fatigue or sweat, and so on. In
order to ada.pt. to the change of the characteristics of
EMG signals, Yoff-line and on-line learning procedures
are carried out using the LLGMN.

Now, let us consider the learning with the teacher
vector T'(n) = (Ti(n),---,Te(n), - -, Tx(n))7 for the
n-th input vector ‘#(n). The teacher signal is used
Ti(n) = 1 for the particular class k and T;(n) = 0 for
all the other classes. As an energy function J for the
network, we use

J= —Z Zmn) log Y(n), (7
nezl ksl
and the learning is performed to minimize this, that
is, to maximize the likelihood function. A

Here the dynamics of a terminal attractor [10] is
incorporated into the learning rule in order to regu-
late the convergence time. The concept of the ter-
minal attractor (TA) is invented on the basis of the
idea that the state of the dynamic system converges
to the equilibrium point in a finite time, if the Lips-
chitz conditions are violated at the equilibrium point.
The convergence time is always less than the prespec-
ified upper limit so that the mental stress of the op-
erator waiting for the convergence of learning may be
reduced.

Before starting the use of the proposed system, the
EMG pattern vectors z(n) for forearm motions of the
operator are measured during motions, which are used
for the off-line learning. Then the operator controls
the manipulator for many hours, it is necessary to con-
sider the variations of EMG properties resulting from
nuscle fatigue, sweating and the change of electrode
characteristics. Therefore, it is required to find an on-
line learning method adaptable to these variations, in
order to discriminate the EMG pat.tem successively at
all times.

The problem is that we cannot ascertain whether

the estimated motion coincided with the amputee’s
‘intended one while controlling the manipulator. Thus
- we cannot directly find the desired output, that is, the
teacher signal. Therefore, we utilize the entropy H(n)
defined as

, K
H(n) = =) Yi(n)log, Ye(n). (8
k=1
If the entropy H(n) of the output of the LLGMN
for the EMG pattern z(n) is less than the threshold of
the on-line learning #,, a pair of z(n) and the output
motion is added to the set of the learning data, and the

oldest of the stored learning data is deleted. Then, the
network weights are updated using the new set of the
learning data. In the case where the energy function
J does not decrease during the first ten iterations of
the learning procedure, the weights are not updated
to avoid incorrect learning (7]

The human-robot interface has to be reliable for
human use. Therefore, in order to reduce the ill-
discrimination, the entropy is used also for a-mo-
tion suspension rule, because the entropy indicates,
or may be interpreted as, a risk of ill-discrimination.
For example, if the entropy is over the determination
threshold 84, the determination should be suspended
since large entropy means that the network output is
ambiguous. Thus, possible ill-discriminations are ex-
pected to be reduced.

4 EMG controlled robotic manipulator

The robotic manipulator (Move Master RM-501 :
Mitsubishi electric, Corp.) has three degrees of free-
dom both in the forearm and the upper arm.  The
coutrol system consists of the forearm: controller and
the upper arm controller. The forearm controller uses
the information on the EMG signals of an operator
through the EMG signal processor, and the upper arm:
controller uses the posmon of a 3D sensor attached to
the operator.

The upper arm controlier controls a joint a.ngle of
the upper arm according to the position of the oper-
ator’s wrist joint measured by the 3D position sen-
sor (ISOTRACK II: POLHEMUS, Inc.). This device
uses the information on the electromagnetic fields to
determine its 3D position. The static accuracy is
+ 2.4 [mm)] for the x, y or z position. It should be
noted that this device allows the operator to take an
achitrary position having no occlusion problem. The
operator’s wrist position is measured with the sam-
pling frequency 5 [Hz], and the joint angles of the
manipulator are calculated using this position. The
correspondence of the operator’s wrist position with
the manipulator’s one enables the operator to control
the manipulator intuitively(7].

The forearm  controller controls forearm motions,
its driving speed and grip force according to the infor-
mation on the EMG signals.

5 Rehabilitation training and biofeedback

The handicapped person can improve his/her phys-
ical strength through voluntary and interactive train-
ing. When the operator goes into training, the ampli-
tude information on the EMG signals, feature patterns
and discrimination results of the EMG signal proces-
sor are shown as the biofeedback. The 3D computer
graphics of the virtual manipulator is also provided
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Figure 4: An example of the robot control..

during the manipulation training. Even if the operator
does not use the -real manipulator, the manipulation
training can be simulated using the virtual manipu-
lator on the display. Moreover, the tests for physical
strength are prepared in order to examine the improve-
ment of the operator’s physical ability through train-
ing. These processes are performed by the operator’s
intention or the therapist’s diagnosis at any time. The
results of the test are put together into a database.
The rehabilitation program can then be modified by
the therapist’s diagnosis based on this database.

6 Experiments
6.1 Example of the robot control

We have conducted experiments to demonstrate
and verify the proposed method. Six pairs of surface
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Figure 5: Improvements of motion discrimination
rates by the on-line adaptive learning.

electrodes (L = 6) were attached to the forearm and
upper arm of the subject. The subject is a university
student (Male, age 27, normal). The determination
threshold and the online learning threshold were set-
tled as 8; = 0.55,8, = 2.0, and the number of the
learning data was N = 80 (8 motions, 10 for each
motion).

- Figure 4 shows the discrimination results by the
EMG signal processor. In the figure, the motion
pictures, EMG signals, amplitude information of the
EMG signal, entropy- H(n) and the discrimination re-
sults are shown. It can be seen that the EMG pat-
terns are discriminated with high accuracy. The ill-
discrimination can be reduced using the motion sus-
pension rule. These figures indicate that the opera-
tor can control the manipulator successfully using the
proposed system. ~

6.2 Effect of the adaptive on-line learning.

Next, we examined the effect of the motion suspen-
sion rule and the on-line learning on discrimination
ability in the EMG signal processor. The operator

~ was asked to continue to perform eight kinds of mo-

tions for about 120 minutes, and the discrimination
rates were calculated every 10 minutes. The operator
was not informed of the discrimination result.

The time histories of discrimination rates and the
accumulative frequency of the misclassification data
in the forearm control unit are shown in Fig. 5. The
discrimination rates of the line (d) which did not use
the motion suspension rule and the on-line learning
decrease depending on time, because of the time vari-
ation of the EMG pattern caused by fatigue or sweat.
The lines (b) and (c) indicate that the motion suspen-
sion rule reduces the ill-discrimination. Especially, the
discrimination rate of the line (a) which uses both the
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Figure 6: An example of the biofeedback during the rehabilitation training;

motion suspension rule and the on-line learning keeps
considerably high classification rate during the whole
time the operator was controlling the manipulator.

6.3 Example of the rehabilitation training
and biofeedback

Figure 6 shows the example of the biofeedback dis-
play during the rehabilitation training. In Fig. 6(a),
the 3D computer graphics of the virtual manipulator,
the feature pattern, amplitude information and dis-
crimination results of the measured EMG signal are
shown. This screen image is updated every 200{msec].
The central window in Fig. 6(b} shows the measured
EMG signal data for 5.0{sec]. Also, the time series of
the discrimination results for these signals is displayed
in the left window. In Fig. 6(c), the central window
shows the records for the past five times and the left
window shows the correct discrimination rate for the
test of the flexion motion. In addition, the training

- menu is shown in the right window.

7 Conclusion

This paper proposes the concept of a human-robot -

interface as rehabilitation aid and develops. the proto-
type system. The prototype system has two functions
: to be used as a controller of the robotic manipulator
and as rehabilitation system for the handicapped per-
son. In the experiments, it is seen that the robotic ma-
nipulator can be controlled with high accuracy via the
operator’s EMG signal, and that the adaptive learn-
ing of the neural network improves the discrimination
ability of the EMG signal. The rehabilitation program
and biofeedback are also discussed.

Future research will be directed at developing tech-
niques to improve the rehabilitation program and
biofeedback method. We would further like to extend
the usefulness of our human-robot interface using the
mmternet protocol.
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