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Abstract. This paper deals with the rotational stability of a rigid body under the constant contact
forces. For this problem, first, the stiffness tensor is constructed and its basic properties are analyzed.
Stability due to the gravitational and the internal forces is considered separately. For the gravity-
induced stiffness only one necessary condition of stability, formulated in terms of geometric and

avity centers, is obtained. The internal force parameterization is done with the use of a virtual
inkage/spring model. Within this parameterization, necessary and sufficient conditions of stability
under internagl force loading are obtained in the analytical form. In the space of the internal forces
they form a region given by intersection of 2 plane and a singular quadric. These conditions can be

incorporated into the grasping force planner.
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1. INTRODUCTION

One of the fundamental problems in controlling
multi-fingered hands is stability of the resulting
grasp. In recent years, the problem has been ad-
dressed from different points of view and a number
of approaches to defining the grasping stability, its
robustness, and relation to such concepts as grasp-
ing form and force closure, has been proposed in
literature. A very good survey on this topic can
be found in (Shimoga, 1996). Here in this paper
we address the problem in a somewhat simplified
way, dealing only with the rotational stability of
the object.

Basically, the total compliance of the object,
grasped by multiple arms or fingers, Copject,bas
two sources:

1)

The first one is due to compliance of the
arm/finger itself, and the second one is due to
the contact force interaction between the arm
and the robot. Roughly, the first term is de-
fined by the transformation of the joint compliance
Cjoint to the Cartesina level through the arm ja-
cobian J. The Cartesian compliance of the arm,
Cringers = JCjointsJ ", is symmetric and posi-
tive definite (and therefore stable) as long as the
joint compliance matrix is stable. The compli-
ance due to the finger interaction, Cioading, is not
necessarily positive definite. Ii depends on the
contact force distribution, and is often the source
of grasping instability. This phenomena has been
discovered and studied by (Nguen, 1989; Cutkosky
and I.Kao, 1989; Kaneko et al., 1990). It should
be noted that very similar subject—stability due

Cobjcct = Cfingers + C!ocd:‘ng~
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Fig. 1. Sources of the object compliance.

to internal forces in mechanisms with closed kine-
matic chains—was analyzed by (Hanafusa and
Adli, 1991; Yi et al., 1991).

One possible approach to provide stable grasp-
ing can be formulated as follows: for a given ma-
trix Cioading find out the the total finger compli-
ance C'ringers S0 that the object compliance ma-
trix Copject be positive definite. Theoretically this
approach can work nicely. However, it is case-
dependent approach and there is no systematic
procedure for adjusting the compliance of the fin-
gers to that of the object. Another possible so-
lution of the stability problem is based on de-
composition of the total compliance and designing
the corresponding matrices, C fingers and Cloading
separately. Indeed, if they are both stable than the
resulting compliance will also be stable. Concep-
tually, this approach is taken in this paper, and
in our work we do not consider the compliance of
the fingers at all. In so doing, we consider the
grasp to be stable if its stiffness matrix is not neg-
ative definite. The reason for taking this view is
simple—even if the contact force induced compli-



ance is positive semidefinite, the resulting compli-
ance of the system can be easily made stable with
simple proportional control of the fingers’ joints.
In a sense, we shift the problem of stable grasping
from control level to the planning level.

Our work was motivated mainly by papers of (Li
and Kao, 1995), where fundamental properties of
the grasp stiffness matrix were under investiga-
tion, and of (Jen et al., 1996), where the rotational
stability of the grasped object was analyzed from
the classical standpoints of the Lyapunov’s the-
ory. However, the relation of the stability to the
internal force distribution has not been studied in
detail, and necessary and sufficient conditions of
stability have not been obtained in the analytical
form. In our work we want to fill the gap be-
tween the two cited papers. Another papers that
are worth noting in this introduction are (Howard
and Kumar, 1994), where the geometric properties
of the object has been brought into the stability
analysis, and (Mason et al., 1995), where gravi-
tational effects in the stability problem has been
investigated.

This paper is organized as follows. Firstly, in Sec-
tion 2 the analytical expression for the stiffness
tensor is derived and its basic properties are dis-
cussed. Force parameterization for the so-called
virtual linkage/spring model is given in Section 3.
Stability of the gravitation force loading is dis-
cussed in Section 4.1. Necessary and sufficient
conditions of positive definiteness of the stiffness
tensor under internal force loading are derived in
Section 4.2. Finally, conclusions are presented in
Section 5.

2. STIFFNESS TENSOR

Let us consider a rigid body subjected to multi-
ple frictional contacts. Assume that the constant
forces fy, fa,---, f, are applied at the points de-
fined by the radius-vectors py, p,,...,p, drawn
from the center of mass 0. The body is at the
equilibrium so the static equations read

Zfiz“mg3 Zpixfizor 2

i=1 i=]

where m is the mass of the body and g is the
gravity vector. Let 8 (Fig. 2) be the vector of
the finite rotation of the body. The coordinates
of the contact points after rotation of the body,
p;(8), are defined by the Rodrigues’ equation for
the finite rotation:

1
pz( ) pu + 1 + :]i_o'rg

Since the contact forces are assumed to be con-
stant, calculating the potential energy leads to the
following expression:

“ 11
= - S To(f)= = e @F
- g ft pt(e) 2 1 3 i_g‘re G Ke? (4)

0% (b + 30 % p,). (3)

Fig. 3. Stretching and compressive forces.

where

K =) (oTf)I - pifT ()

i=1

is the stiffness tensor. The potential energy is al-
ways positive (and the equilibrium is stable) as
long as K is positive definite. Note that for the
small rotation @ the potential energy is trans-
formed to the familiar quadratic form. Also note
that in the planar case the rotational stiffness is a
scalar given by

K= Epffi' (6)

i=1

The following properties of the stiffness tensor can
be formulated straight away. First, K is symmet-
ric as long as the object is at equilibrium. Indeed,
one can prove that K — K™ = (3L, p; X i),
and, therefore, the skew-symmetric part of K is
always zero by the static equations (2). Here, §2 is
the skew-symmetric operator such that 2(a)-b =
a xb. If, however, the object is not at equilibrium,
K is always asymmetric.

Next, even though K is symmetric at the equilib-
rium, it is not always and not necessarily positive
definite. It is only in some simple cases when the

782



Fig. 4. Shift to the geometric center.

judgment on the positive definiteness of K can be
done easily. Consider, for example, the case when
all the applied forces are coplanar to the corre-
spondent vectors p;, as shown in Fig. 3. In this
case f; = k;ip;, and formula (5) gives

K =Y k{(pTp)I - p;p7}- M

fz=1

As can be easily seen, K has the structure of the
inertia tensor of a system of points built on the
vectors p;, with k; playing the role of masses.
Therefore, if all k; > 0, i.e., all the forces are
stretching, K is positive definite and the equi-
librium is stable. In the opposite case when all
k; < 0, i.e., all the forces are compressive, K is
negative definite and the equilibrium is unstable.

However, in the general case when k; have different
signs or if the applied forces f; are not coplanar to
P;, it is not that easy to to make a judgment on the
properties of K without its direct computing, and
additional study of the force structure is required.
Finally, please note that the forces we deal with
in this paper are assumed to be constant in the
inertial frame. If they are constant in the body
frame, we can show that K = 23", p; X f;),
and it is zero by the static equations. In such a
case the applied forces f; do not contribute to the
rotational stiffness tensor as long as the body is in
equilibrium.

3. FORCE DECOMPOSITION

To relate the stability properties to the structure
of the applied forces one should make the force de-
composition and obtain analytical solution of the
static equations. One possible decomposition can
be based on the pseudo-inversion of the grasp ma-
trix. Such decomposition, interpreted in terms of
the screw theory, has been given in (Kumar and
Waldron, 1989). Here, we present slightly differ-
ent computational procedure, based on the classi-
cal vectorial notation and changing the reference
point.

First, in order to make all the calculations easier,
we shift the reference point to the geometric center

C {Fig. 4) defined by

1 n
i=1
Introducing the block vectors $, = {—mg,0}"
and f = {f1,---, fn}T, we can rewrite the static
equations in the following form:
$, = B,f = B,.B.f, (9)
where
I o o ... I
Be=loloy 9| Be=|ay - atw)]

and r; = p; = p.. If n > 3 (n > 2 in the pla-
nar case) and the contact points are not coplanar,
B,.B. is a full-rank decomposition of the grasp
matrix B, and, therefore, B} = B} B

Note that the symbolic computation of the pseu-
doinverse B} = B} (B.B?)"! is much easier than
that for the original, non-decomgosed matrix B,.
It is due to the fact that Y ;_,r; = 0, and
therefore, B.B. = diag{nI,J .} has the block-
diagonal structure. Here,

Je= Z 27 (ri)02(rs) (10)

is the inertia tensor of the system formed by the
points r; with unit masses. In the general spatial
case J. € $3*3 is symmetric and positive definite
if n > 3 and all points do not lie on a common
line.

The general solution of (9) has the following form:
F=B;%,+ Pryp, (11)

where P; = I — B} B, is the orthogonal projec-
tor onto the null space of the grasp matrix B,,
i.e., onto the space of the internal forces, and it
does not depend on the reference point p,. Here,
in (11), ¢ = {¢7,...,9F}" is composed of the
arbitrary specified vectors ;. Computing (11) in
the vectorial form and skipping all the interme-
diate calculations, we finally arrive at the analyt-
ical solution of the static equations. It is given
by the orthogonal decomposition of the applied
forces, f = fg + fy, where the gravity-inducing,
Fei and the mternal force, f;;, components are
defined as follows:

]

foi = (XN 2p) ~ ~Dmg,  (12)

b= Y ABr)IT 2(re) + 210, (13)

k=1

fri

Note that ¢ defines redundant representation of
the internal forces and does not have clear physi-
cal meaning. To introduce physically meaningful
parameterization of the internal forces, let us, fol-
lowing to (Kumar and Waldron, 1989}, character-
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ize the interaction between any two fingers by
ai; = (ri—7;)"(f: = ;) (14)

i.e., by the difference of the contact forces pro-
jected along the line joining the two contact
points. The interaction force is of compression
type if a;; < 0, and of tension type if a;; > 0.
The physical meaning of a;; is the work produced
by f;; = fi—f; on the displacement 7;; = 7;—7;.

Note that the dimension of a;;, [N - m], can also
be interpreted as that of the rotational stiffness.
Continuing this thought, we could have introduced
another possible parameterization -of the internal
forces by &;; = ai;j/(r§ri;), where &;; are the
stiffness of the linear virtual spring connecting the
two contact points. It is remarkable that in this
interpretation the grasp of the rigid body can be
represented by the virtual springs which can have
as positive as well as negative shiftiness. It should
also be noted that this interpretation is closed con-
ceptually to the virtual linkage model considered
in (Williams and Khatib, 1992). In the forthcom-
ing analysis, for the sake of simplicity of the result-
ing mathematical expressions, we, however, will
deal with the parameterization given by (14).

In the non-redundant, minimal representation of
the internal forces, for which there exists one-to-
one mapping between the applied forces f and the
vector combined of &, and ¢, the solution of the
static equations is specified as

f= B:dio + Prac, (15)

where P, € R27%(2n-3) in the planar case, and
P, € $37%3(n=2) jn the spatial case. Note that
a = {a;j} € R Equating the dimension of
« to the column-dimension of Pj,, one obtains
the numbers of the contact points admissible for
the minimal representation. They aren = 2 or
n = 3 in the planar case, andn =3 orn=4in
the spatial case.

To obtain an analytical expression for the matrix
Py, one must represent (14) in the matrix form
so that

& = Ao(r,’j)f. (16)

This representation depends on how the ele-
ments of a are ordered. For example, for
the three-fingered grasp shown in Fig. 5 with
a = {a,as1, 22}, the matrix A, can be con-
structed as follows:

0 T3 T
Ao=| —Tx 0 T3 an
e -T2 O

Now, having constructed A,, we can prove that
the matrix P can be expressed in the following
form:

Pro= Al = AT(A AL (18)

This formula and the representation (15) also re-
main true for n < 7, i.e., even though parame-

Fig. 5. Virtual springs in three-fingered grasp,

terization of the internal forces in terms of a be-
comes redundant. It, however, still keeps the ad-
vantage of having clear physical meaning, and is
by no means worse than the parameterization by
. Note that for n > 7 the matrix 4,4 becomes
singular and, therefore, representation (18) does
not hold.

4. STABILITY ANALYSIS

Similarly to the applied forces f, the stiffness
tensor K can be decomposed into its gravity-
inducing, K¢, and internal force inducing, Ky,
components with

K=K¢g+ K. 19

In this section, we try to find out condition un-
der which the matrices K and K; are positive
semidefinite.

4.1. Gravity-Induced Stiffness

We start our analysis with dbtaining the analyti-
cal expression for K. Substituting (12) into (5),
after some simplifications we get

Ko = 27(f)2(p,) + >_ripi27(r:), (20)

i=1

where p, = J7'm,, m. = —p. x f,, and
f. = —mg. Next, making use of the Jabobian
identity, we can represent K¢ through the geo-
metric invariants of the body. This is given by

Ko = 2%(p)2(F) + ).~ oI}, (21)
where o = }trJ..

If the geometric center of the object coincides with
its center of mass (p, = 0), K does not con-
tribute to the total stiffness. Another particular
case of all-zero eigenvalues of the matrix Kg is’
the one where the object is planar and its plane is
orthogonal to the gravity force.

In the planar case K¢ = p} f., and the stability
condition is

Kg= p:fc >0, (22)
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Fig. 6. Gravitational stability.

Fig. 7. Symmetric three-fingered grasp.

It has the following geometric interpretation: for
the no-internal-force grasp to be stable the center
of mass of the object must lie below its geometric
center as shown in Fig. 6. For example, in the
three-fingered grasp shown in Fig. 7 (2nd and 3rd
grasping points are symmetric), the grasping angle
3 should be more than 7 /6.

Unfortunately, in the spatial case the judgment
on K¢ is not that simple. What is necessary and
sufficient for the planar case is only necessary for
the spatial one. Indeed, inspecting the structure
of K, we can show that trKg = 2pJf. and
hence, by the Routh-Hurwicz criterion, the con-
dition (22) is also necessary for the stability in
the spatial case. However, taken alone it is not
sufficient since the other two conditions of posi-
tive definiteness of K¢ must be established and
tested.

It remains the topic for our future study to find the
geometric interpretation—the one given in terms
of the geometric invariants of the body—of the
full set of stability conditions for the matrix K.
Here, we want to consider two special case when
the structure of the eigenvalues of K ¢ can be iden-
tified easily.

In the first particular case the vectors p, and f,
are coplanar, i.e., p, = kf.. Under this assump-
tion the second term in (20) vanishes and it can
be shown that the eigenvalues of K¢ are as fol-
lows: Ay = 0,223 = pl f.. Hence, (22) is the only
condition for the stability judgment. As such, it
is necessary and sufficient condition.

In the second particular case, the matrix prod-
uct $2(p.)J . is commutative. It holds when, for
example, the grasping points form a regular poly-
hedron (Fig. 8). To make the stability judgment,
we represent K by the sum of two symmetric
matrices K and K, which can be constructed
in the following form:

Fig. 8. Regular-polyhedron-type configurations.

‘Q(uc)JC "“ Jcn(”'c) . (24)

1"
Kg 5

For the regular polyhedrons J . is proportional to
the unit tensor (Coxeter, 1973), and this elimi-

nates K¢ from the analysis. As can be shown,
the eigenvalues of the remaining matrix Ky are
defined as follows: A; = p] f,. and

CTAIEHA 25)

Tf.
A2,3z pCfC 2

By the Cauchy inequality

(PTF) S (TP IFTf ) (26)

and one of the eigenvalues will be always negative
unless p, = kf ., which reduces the analysis to the
case considered before.

4.2. Internal-Force-Induced Stiffness

Let us now consider stability due to the inter-
nal forces. To facilitate mathematical description
of the forthcoming analysis and to cover the gen-
eral case of n contact points, we will use another
description for the elements a;; of the vector a.
Namely, it will be assumed that they are some-
how ordered and can be addressed by oniy one
subscript. The same rule will be kept for the cor-
respondent vectors r;; and f;;. The use of single
indexed variables will be marked by bar sign, i.e,,
&; will correspond to some element a;.

As before, we start the analysis with considering
the planar case. First, by direct summing up all
aij as given by (14) and comparing the result with
(6), we arrive at the following remarkable formula

1
K= ;za‘ >0, (27)

where N = n{n—1)/2is dimension of the vector c.
In the planar case this condition is necessary and
sufficient for stability under the internal forces.

Next, coming to the spatial case, we represent the
internal forces as f; = A}« and substitute them
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into (5). After simplification we obtain

N
Kr=>Y B{FTF)I - 777}, (28)

i=1

where elements of the vector 8 = {81,...,0~n}"
are related to the components of the vector o by
B = (A,AT) la. (29)
As can be easily seen, K; has the structure of
the inertia tensor of a system of points built
on the vectors ¥;, with 8; playing the role of
‘masses. Hence, NV linear with respect to &; con-
ditions of B; > 0 would be sufficient to guaran-
tee that the matrix K is not negative definite.
As will be shown below, they can be reduced to
just two conditions—one linear and the other one
quadratic—imposed on the elements of a.

At first, we will show that \; = L TN &; is valid
eigenvalue of the matrix K;. Indeed, computing
the determinant of the matrix K; — A\ I, we get

det(K A I) = det( N, BiF:7T). By the gener-
alized Lagrange identity (Bellman, 1960) we have

1

N
6 Z BiBjBk(det{f‘i;ij;‘sz_

N
det() BiFiT) =

i=1 i,7,k=1
However, by construction of the virtual spring
model, every three vectors 7;, 7,7 there are lin-
early dependent. Hence, det(K; — A\ ) = 0 and
A is the eigenvalue of K;. Thus, the condition
(27) is also necessary for stability in the spatial
case. As to the other two eigenvalues of Ky, we
note that tr Ky = 2X;, and therefore

AL £ VA - dy(a)

e (30)

A3 =

where (o) = det Ky /), is the quadratic form of
o. The stability is guaranteed if y = a"T'ga > 0,
provided that (27) holds true. Now, the remain-
ing part of the analysis is to define the matrix
I',. Note here that v can be also represented
in terms of variables B3, ie., as v = B8 I's0.
We can define elements of I'g with the use of
the unit coefficients method, i.e., by computing
det Ky and X\, with 8 = {0,...,0,1,0,...,0}7
and 8 = {0,...,0,1,0,...,0,1,0,...,0}7. Skip-
ping all the intermediate results, we can show that

fi=j
otherwise

0

Lok { (7o X 73)7(F; x 75) (31)
It is interesting that the geometric meaning of
the off-diagonal elements of I'g is that {I'g}ij =
S%/4, where S;; is the area of the triangle built
on the vectors #; and #;. Note that I'g is singu-
lar sign-indefinite form. We can show that in the
space of variable 3 this quadric is represented by
a cone.

Now, having defined I'g we can return to I',.
Taking into account the relation between o and
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B, we obtain

Ta =(A4,A7)7 ' T'p(A,A7)7! (32)
Finally, recalling the relation between o and f;,
we can formulate the second stability condition in
terms of the internal forces f,. It reads

TAITH(AD)Tf; 2 0. (33)
This completes our analysis. Note that geometri-
cally, regardless of whether we conduct the stabil-
ity analysis in terms of «, 3, or f;, the stability
area is defined by intersection of the plane (27)
with the cone (33).

5. CONCLUSION

The problem of the rotational grasping stabil-
ity under the constant force loading has been ad-
dressed in this paper. The structure of the stiff-
ness tensor has been represented through the con-
tact force decomposition. Two conditions of stable
grasping under the internal force loading has been
obtained in the analytical form. However, only
one condition of stability, formulated in terms of
the geometric and gravity centers, has been estab-
lished for the gravity-induced stiffness.
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