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Abstract

This paper presenis a new trajectory generalion
method of the artificial potential field approach to «
real-lime motion planning problem. In the artificial
potential field approach, the goal is represented by an
aliractive artificial potential and the obstacles are rep-
resented by repulsive ones, so that the robotl reaches
the goal without colliding with obstacles by using a
gradient vector of the potential field. Although this ap-
proach is simple and computationally much less ezxpen-
stve than other methods based on the global informa-
tion on the task space, few attention have been paid to
temporal behavior of the generated trajectories such as
a movement time from the initial position to the goal
and the velocity profile of the end-effector motion. In
the present paper, we argue that temporal behavior of
the generated arm trajectory should be taken into ac-
count within the framework of the artificial poieniial
field approach and introduce a time base generator that
determines a dynaemic behavior of the arm trajectory
as a part of a feedback controller. By synchronizing a
time course of the potential function used as an arli-
ficial potential field with the time base generator, the
temporal behavior of the generated arm trajectory can
be adjusted through the time base generator without
any change of the potential function to be used.

1 Introduction

In the artificial potential approach [1]— [7] used for

a trajectory generation problem of a mobile robot or a
manipulator, the goal is represented by an attractive
artificial potential and the obstacles are represented
by repulsive ones, so that the trajectory from the ini-
tial position to the goal can be generated by using a
gradient vector of the potential field. This approach is
suitable for a real-time motion planning of robots since
the algorithimn is simple and computationally much less
expensive than other methods based on the global in-
formation on the task space. However, at least two
_ important disadvantages should be pointed out.

The first one is the local minima problem. At the
point where the attractive potential to the goal and
the repulsive one from the obstacles are equal, the
gradient vector of the potential field becomes zero and
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the robot falls into a deadlock. Many methods have
been proposed to overcome this problem. For exam-
ple, Okutomi and Mori {3} used an ellipse-shape poten-
tial field and showed that the possibility falling into
local minima could be reduced by devising the po-
tential function. Connolly, Burns and Weiss [4] pro-
posed a method using the Laplace’s differential equa-
tion based on the idea that the local minima problem
is completely solved when the potential function not
including any local minima can be defined. Also, some
potential functions on the basis of this idea have been
proposed [5],[6]. »

The other disadvantage is that a temporal behavior
of the generated trajectories such as a movement time-
from the initial position to the goal and a velocity
profile of the end-effector motion cannot be regulat-
ed by the artificial potential approach. For example,
even if the use of the potential function not including
local minima can assure that the manipulator always
reaches the goal, it is difficult to estimate the move-
ment time required for reaching beforehand. Also the
velocity profile of the generated trajectory cannot be
adjusted as we want since it is determined by the shape
of the potential field. Although one of the most impor-
tant features of the artificial potential field approach
is a real-time applicability, it is difficult to use the
generated trajectory for the control of robots in real
time because of this disadvantage. There has been not
enough consideration about the temporal behavior of
the generated trajectories since the deadlock-free path
planning was the most active research topic about the
artificial potential field approach.

Recently, Hashimoto et al. [7] proposed the method
using the electrostatic potential field and the sliding
mode control. The method can generate a continu-
ous trajectory not including local minima and has an
excellent feature that it assures to reach the goal in
a finite time. Also, Morasso, Sanguineti and Tsuji
[8], [9] proposed the two-dimensional trajectory gener-
ation model for reaching movements of human arm.
In this method, the hand trajectory is generated by
synchronizing a translation velocity and a rotational
angular velocity of the hand with a signal generat-
ed by a Time Base Generator (TBG). The TBG is a



time series generator that the generated signal has a
finite duration and shows a bell-shaped velocity pro-
file. Thus, the movement time and the velocity profile
-of the hand trajectory can be regulated indirectly by
changing a dynamic property of the TBG.

This paper proposes a new trajectory generation
method by introducing the TBG into the artificial
potential field approach for multi-joint manipulators.
The method. can regulate the movement time of the
manipulator from the initial position to the goal and
the velocity profile of the end-effector motion. Vari-
ous potential functions developed in the previous re-
searches can be used in the proposed method since
the temporal behavior of the generated trajectory is
;egula.ted through the TBG rather than the potential
unction.

2 Trajectory Generation Using Time
Base Generator

2.1 Artificial Potential Field Approach on
the Basis of the Steepest Descend
Method

Let us consider a trajectory generation problem
to move the end-effector of the m-joint manipulator
shown in Fig.1 from the initial position zg to the tar-
get position z*. Note that only the kinematics of the
manipulator is considered in this paper to make the
problem simpler. Now, the relationship between the
joint angle vector § € R™ and the end-effector position
vector z € R/ is given by

z = f(6), (1)

where f(-) is a nonlinear function representing the
kinematics of the manipulator.

Then, a differentiable potential function V(z) is de-
fined in the task space. At the target position z*, the
potential function becomes zero, V(z*) = 0, and at
other end-effector positions in the task space, V{(z) is
larger than 0. :

Motion planning can be performed on the basis of
the artificial potential field defined above in two differ-
ent ways: the resolved motion rate control approach

Figure 1: A model of m-joint manipulator

[10] and the force control approach [2]; [11]. In the re-
solved motion rate control approach, the end-effector
velocity vector in the direction of the negative gradient
field is computed as z = —%% . Then, the end-effector
velocity vector & is transformed into the joint velocity
vector # through kinematic inversion. On the other
hand, the antigradient field «%‘;’;— is used as an artifi- -
cial end-effector force field acting on the end-effector in
the force control approach. Then, the resulting force
vector is converted to the joint torque vector 7 using
the transposed Jacobian matrix and dynamic evolu-
tion of the manipulator results the end-effector motion
towards the target position.

The first approach requires to solve the inverse kine-
matics problem, which is computationally expensive '
especially for redundant manipulators. On the oth-
er hand, the second approach is simple and effective,

" although the dynamic effects must be evaluated.
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In this paper, on the basis of the kinematics of the

manipulator, the joint velocity vector ¢ is determined
through an optimization procedure of the potential
function V(z). Using the negative gradient vector of
V(z) in the direction of the steepest descent, we define
the joint velocity vector as follows:

. av\T av \7
= | =—p| —J
i==(%) = (%) -
where 1 is a positive constant and J € R'*™ is the
Jacobian matrix.

The time derivative of the potential function V can
be calculated as
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Assuming that the manipulator is not in any singu-
lar configurations and the potential function V(z) is
chosen in such a way that the gradient vector %% is
not zero at any end-effector positions in the task space
except for the target position, we can assure that the
system is asymptotically stable.

Although the amplitude of the joint velocity can be
changed using the parameter 7 of 62), a criterion to de-
termine the parameter 7 is not given. It is impossible
to specify the time required to reach the target posi-
tion precisely and impossible to regulate the velocity
profile of the end-effector to a desirable one.

2.2 Use of Time Base Generator

At first, the scalar signal £() is defined as a first dif-
ferentiable and monotonically non-increasing function
satisfying £(0) = 1 and £(t;) = 0, where {; represents
the convergence time. In this paper, we consider the
regulation of the temporal behavior of the generated
trajectory by synchronizing the time course of the po-
tential function V with the scalar signal £(f) and a



mechanism generating £(¢) is called a Time Base Gen-
erator (TBG) [8].
Using this £(t), (2) is modified as follows:

. T
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where pis a positi\}e constant. This means that the
parameter 7 in the artificial potential field approach
(2) is selected as follows:
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Then, the time derivative of the potential function
V can be calculated as

()

: §
V=pV=.
£
Since p > 0, V>03£>Oandé<ﬁatanytexcept
for t = t;, we have V < 0, that is, asymptotic stability
of the system is assured.

Equation (6) can be transformed as

v _v
& ~Fe
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The above differential equation can be solved for the

variable £ as follows:
V =g, (8

where Vy = V(&) is the initial value of V. Thus we
- can see that the potential function V is proportional
to the pth power of £. Since { reaches zero at t,
the end-effector of the manipulator must arrive at the
target position z* at t; where the potential function
also becomes zero V = 0.
In the limit when & approaches zero, the first deriva-
tive of the potential function is given as

lim V = —gptPA=1,
£—0

(®)

We can see that V converges to zero at ¢ ¢ if the pa-

rameter p is selected as p > 1 — . Also the second

derivative of the potential function can be computed
as - » '
lmV =—¢#*2(p+p-1),  (10)

and p > 2(1 — B) is the condition that it converges to
z€r0.

2.3 An Example of TBG

As an example of the TBG, the terminal attractor
is used in this paper. The terminal attractor was in-~
troduced by Zak {12] into a non-linear neural network
model. It has been shown that the system with the
terminal attractor always converges to the equilibrium
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‘Figure 2: Change of the £ behavior depending on the

convergence time t; with the constant power parame-
ter =05

point in a finite time at which the Lipschitz condition
1s violated.

Here, the following nonlinear dynamics is consid-
ered as the TBG with the terminal attractor:

é = "afﬁa (.11)

where o > 0 and 0 < f# < 1 are constants and £(0) =
1.0 from the definition. Then, we have

dé

= aftP-1, (12)

so that the Lipschitz condition is violated at the equi-
librium point £ — 0 [11]. The convergence time &y of
£(t) can be calculated as follows:

_ ty _ Oiié—. 1
ij-—/; dt-‘/l E w———-—-—-——a(l_ﬁ).

Consequently, we can see that the equilibrium point
¢ = 0 is a terminal attractor because the convergence
time is always given as the finite value. Using (13),

(13)

the parameter « in (11) is determined as

T t;(1-p)

s0 tlhat the convergence time {; can be specified pre-
cisely.

Figures 2 and 3 indicate the temporal behavior of
the scalar signal £ generated by the TBG when the
parameters £; and 3 are varied. In Fig. 2, the time

[e4

(149)
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Figure 3: Change of the £ behavior depending on
the power parameter @ with the constant convergence
time £y = 1.0{s]

histories of £ and & with different convergence times
t; = 1.0, 1.5 and 2.0(s) are shown, where # = 0.5.
1{11 trajectories converge to the equilibrium point at
the specified time ¢;. Also, Fig. 3 shows the time

histories of ¢ and & with different power parameters
B = 0.25, 0.5 and 0.75, where the convergence time

is fixed at ¢y = 1.0(s). The time history of £(¢) can
be regulated through the power parameter 3 with the
same convergence time. .

Consequently, using the TBG with two parameter-
8 ty and @ presented here, we can generate various
time-varying signals £(¢). In the following section, the
method proposed in this paper is applied for a redun-
dant manipulator and an obstacle avoidance problem.

3 Simulation Experiments
3.1 Application to Redundant Manipula-
tor
The proposed trajectory generation method is ap-
plied to a redundant manipulator. First, in order to
utilize arm redundancy, (4) is modified as

. T
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f=D8 0z ) Vs
COE g

—fI=THSE, (15)
where 7 is a scalar function that satisfies y(t) > 0 in
t = [0,t;] and ¥(t;) = 0. Also V, is a differentiable
potential function, which is locally minimized using
redundant joint degrees of freedom. The first term in
the right side of (15} is the joint velocity vector for the
control of the end-effector trajectory, and the second
term works in order to reduce the potential function
V, in such a way that the end-effector trajectory is not
affected.
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Figure 4: Generated trajectories for the five-joint pla-
nar manipulator

Figure 4 shows examples of the generated trajec-
tories using the five-joint plane manipulator, where
length of each link is 0.2 m. The initial posture of the
manipulator is § = [&,0,—8%,0,0]"(rad), and the
target position of the end-effector is z* = [0.4,0.4](m).
The potential function V(z) used here is simply de-
fined as -

(16)

where dr = z* — z. Also the parameters § = 0.5,
p =1 and the convergence time ty = 1.0(s) are used.
Figure 4 (a) shows the generated trajectory using
(4), which means that arm redundancy is not utilized.
Time history of the end-effector position is shown in
Fig. 5. It can be seen that the end-effector reaches the
target position at the prespecified time t; = 1.0(s).

V(z) = %d:chz,
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Figure 5: Time history of the end-effector motion

On the other hand, (15) is used in Fig. 4 (b) and
(¢) with 7(t) = 200(1.0 — ). Maximization of the
manipulability [13] and position control of the second
joint of the manipulator are considered as a subtask
in Fig. 4 (b) and (c), respectively. In this case, the
potential functions V, used in (15) are given as

Vii = —VdetJJT (17)
1
Vg = -édzz’dz,,, (18)

where dz, = zj, — z is the error vector between the
position of the second joint and iis target position. In
Fig. 4 (c), the target position is specified as z}
[~0.3,~0.1]T (m).

It can be seen from the figures that the generated
arm trajectories are influenced by the corresponding
subtask defined above. Note that the end-effector tra-
Jjectory in each figure reaches the target position at
the specified time ¢; = 1.0(s) and the time history of
V() is exactly the same as the one of Fig. 4 (a).

3.2 Trajectory Generation in the Task S-
pace Including Obstacles _
Next, the proposed method is applied to the obsta-

cle avoidance problem. Using the harmonic potential

function [6], the artificial potential field for the task
space including obstacles is defined as :

V() = A log(ll de 1) = 3 Aoi log(l dzes [}, (19)

i=1 '

where the obstacles are represented as n points z,;
and the displacement between z and z,; is defined as
dz,i = &, —z. Also Ay and A,; are positive constants,

n
which satisfy A, > Z)so,-, and log(-) is the natural
£ .
logarithm. '
The first term of the right side 519) represents an
attractive potential to the goal and the second term
represents a repulsive one from the obstacles. It can

be easily seen that (19) satisfies the Laplace’s equation

oV v _

527t 37 =0 (20)
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Figure 6: Real-time obstacle avoidance for the five-
joint planar manipulator generated by the proposed
method

so that there is no local minimum in the task space.
Then we can have .

Y A o~ i
5 = T “243: +EN . “2@:0,-‘ (21)

i=1

Using the potential function (19), it is possible
to reach the goal without falling into the deadlock
[4] - &(‘5} However, because this potential function ap-
proaches negative infinity V(2*) — —oo at the target
position z*, (4) or (15) cannot be used directly. There-
fore, (15) is modified as

'_Pf’(%'])Tu _ g+

Then the time derivative of the potential function can
be derived as .
3

V= pg‘. (23)

Since¢ >0,p>0and £ < 0 at any £ except for t = {;,

we have V < 0.
Solving (23) for V, we have

V=V +plogk. (24)

When € — 0, V — —o0, so that the end-effector of
the manipulator reaches the target position z*.

Figure 6 shows an example of the generated trajec-
tory using this potential function. The same manip-
ulator model as the one in Fig. 4 is used, and the
potential function V, for the subtask of (22) is defined
as

4
V3 = ZQJ'
i=1

where d:czf = Lo~ yj i8 the displacement between the
position of the j-th arm point set on the manipulator -
z,; and the i-th point obstacle z,;. Four arm points
are set on each joint except for the first joint and ten

4 n
=2 D Aalog(lldzii ), (25)

i=14=1
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Figure 7: Goal and obstacle

point obstacles are used as shown in Fig. 7. The
target position of the end-effector is 2* = [0.4,0.4](m).
The potential function V, for the subtask is effective
for avoiding a collision between the obstacle and the
whole body of the manipulator. Note that parameter
B =01, =375 d; =02 (i = 1,2,---,10) are
used and other experimental conditions are the same
as Fig. 4. From Fig. 6, we can see that the end-
effector reaches the goal avoiding obstacles.
Obviously, the method presented in this section
may fall into a deadlock for some environments since
the motion planning is done in the task space. Al-
though the potential function without any local min-~
ima is used for the end-effector motion, other part of
the manipulator may collide with the objects. We in-
troduced this method In order to give an example to
show how the TBG can be utilized for the obstacle
avoidance problem. If the deadlock problem must be
solved, we can easily apply our method in the configu-
ration space approach using the potential field defined
in the joint configuration space of the manipulator.

4 Conclusion

In this paper, the trajectory generation method in
the basis of the artificial potential field approach has
been proposed. The method can regulate the temporal
behavior such as the movement time and the velocity
profile of the generated trajectory by synchronization
of the time course of the potential function used as
an artificial potential field with the TBG. Then the
method was applied to the trajectory generation prob-
lem of the redundant manipulator for the task space
including the obstacles. It was shown that the method
matches other control strategies such as utilization of
the arm redundancy and deadlock-free potential fields.
The method proposed here is also effective for coordi-
nation of multiple robots and path planning of mobile
robots [14{ since it can regulate the temporal trajec-
tory as well as the spatial trajectory of the robots.
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