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Abstract

We here desciibe an approach to *Molecuiar Ariificial
Life* which reptesents a digital life designed on the
‘molecular basls of living systems. We choose a simple,
free-living bacterum Pseudomonas aeruginosa, which
is amenabie to blochemical and genetic analysis, asa
model organism for understanding real-life behavioss in
molecular detall. We focus on the bacterial Intelligent
behavior called chemotaxis, because it is possibly the
~ simplest real-life behavior that can be studied objec-
tively and analyzed quantitatively, Blochemical and
genefic analysisis carmied out to characterize the mo-
lecular circultry that is responsible for the chemotaxis of
P. geruginosa. On the basis of molecular evidence, we
propose a computer model for bacterlal chemotaxis.
The model will be used as part of a digital ife that simu-
lates the whole bacterial system In molecular detall.

1. Introduction

The fact that life-like systems will play an important role
in our future societies is becoming ever more widely
accepted. Life-like systems are expected to actively
monitor environmental conditions and to wisely respond
to the changing conditions. Much work has been pub-
lished onthe phenomenological modelsfor simulating the
behavior of real-life systems [1}. However, these models
are often superficial and unsatisfied from the biological
viewpoint. The phenomenological models for instance
give little insight into the fundamental properties of real-
life systems, including flexibility and adaptability, at the
molecular level. Short cuts and superficial attention to
basic principles are likely to lead at best to poor perform-
ance and at worst to expensive failures.

Bacteria are small (typically less than 5 um long), free-
living organisms that are ubiquitous in a wide range of
environments from soil and water to human host. They
live in precarious environments where nutrient levels,
temperature, humidity and other conditions can change

rapidly and unexpectedly. Bacteria have evolved their
intelligent skills to cope wisely with changing conditions.
For example, bacteria can monitor many aspects of their
surroundings by using various molecular sensors and
actively respond to changing conditions by altering pat-
terns of gene expression [2]. Most bacteria can also seek
out favorable environments and escape away from unfa-
vorable ones by changing their swimming direction in
response to environmental stimuli [3]. These skills allow
bacteria to communicatenotonly with theabioticenviron-
ment but also with each other in microbial communities.

Since bacteria are most amenable to biochemical and
genetic analysis, they have assumed a special role in mo-
lecular and cellular biology. The bacterial system can also
be treated as a model for studying the behavior of living
systemsin molecular detail. We here propose an approach
to "Molecular Artificial Life” which represents a digital life
designed onthe molecular basis of free-living systems. We
choose a' monoflagellated, obligately aerobic bacterium
Pseudomonas aeruginosa as a model organism. Wefocuson
the bacterial intelligent behavior called chemotaxis [4],
because it is possibly the simplest real-life behavior that
can be studied objectively and analyzed quantitatively.
The first section of this paper reviews our current under-
standing of the molecular chemotaxis machinery in P.
aeruginosa [5,6,7,8,9]. The second section describes a
simple computer model for bacterial chemotaxis which
is designed on the basis of molecular evidence. The model
can be used as part of a digital life that simulates the whole
bacterial system in molecular detail.

2. Bacterial chemotaxis

Bacterial chemotaxis is the process by which bacterial cells
migrate through concentration gradients of chemical at-
tractants and repellents [4]. Chemotaxis can be viewed as
an important prelude to metabolism, prey-predator rela-
tionships, symbiosis, and other.ecological interactions in
microbial communities [10]. In addition to its biological
1mportance, chemotaxis has assumed a special role in
giving insight into the signal transduction network of
living systems [2]. Bacterial chemotaxis has also contrib-
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Fig.1 Chemotactic response of P. aeruginosa toward inorganic
phosphate (Pi). The capillary tube, with a diameter of approxi-
mately 10 pm, contained 10 mM Pi and 1% agarose. Bacterial
‘cells, which are within the focus of microscope, can be seen as
small dotts [11].

uted to the understanding of the mechanisms of sensory
transduction in more complex organisms.

2.1. Bacterial chemotactic behavior

Bacterial chemotaxisis a quick process that occurs within
one second after cells are subjected to a chemical stimu-
lus. The computer-assisted capillary technique has been
developed for bacterial chemotaxis assays [11]. In this
method, digital image processing is used to count the
number of bacteria accumulating around the mouth of a
capillary that contains a chemical compound plus agarose
gel (Fig. 1). The bacterial response toward a strong attrac-
tant is so quick that a cloud of bacteria, as can be seen in
Fig. 1, starts to form soon (typically less than 10 s) after
the start of microscopic observation. Therange of chemi-
cal stimuli that elicit behavioral responses varies from
bacterial species to species. P. aeruginosa exhibits chemo-
tacticresponses to a wide rangeof chemical stimuliinclud-
ing L-aminoacids, sugarsand organicacidsand inorganic
phosphate (Pi) [5]. This organism is also known to be
repelled by thiocyanic and isothiocyanic esters [12].
Several lines of evidence suggest the presence of regula-
tory mechanisms underlying the chemotaxis by P. aerugi-
nosa. For example, P. aeruginosa taxis toward several L-
amino acids is subject to control by nitrogen availability

in a manner similar to the control of various enzymes of
nitrogen metabolism [13]. The strength of chemotactic
responses to glucose and citrate is also dependent on prior
growth of the cells on those carbon sources [14]. In
addition, P. aeruginosa shows Pi taxis, only when the cells
are starved for Pi [5]. However, these regulatory mecha-
nisms are still poorly understood at the molecular level.

:, 2.2. Mechanism for bacterial chemotaxis

The basic mechanism of bacterial chemotaxis has been
intensively studied with enteric bacteria Escherichia coli
and Salmonella typhimurium, and it is suggested that simi-
lar mechanisms work among a variety of bacterial species
including P. aeruginosa [4]. P. aeruginosa is capable of -
swimming motility by rotating a polar flagellum that
extends up to several cell lengths from its surface. The
external filament is helical in shape and works against the
medium. P. aeruginosa moves in a three-dimensional
random walk. When cells swim toward higher concen-
trations of attractants, the random walk is biased to
achieve net migration by reducing the probability of ran~
dom reorientation. This is performed by modulating the
direction of flagellar rotation. Bacteria can detect spatial
gradients of chemicals by monitoring their concentration
changes over time as they swim from one place to another.
Since bacteria are small and are subject to the effects of
Brownian motion, they have to compare concentrations
over distancessubstantially greater thantheirownlength.

To exhibit chemotactic responses, bacteria should have
information processing machinery consisting of elements
at least: (i) a measure of the present concentration of a
chemoeffector; (ii) amemory of the chemoeffector concen-
tration at the recent past; (iii) a comparator for measuring
the difference between the present and recent past con-
centrations; and (iv) a switch that influences motor rever-
sal according to the input from the comparator (Fig. 2).
Bacteria also adapt to the continued presence of a stimu-
lus. The immediate changes in swimming behavior that
result when cells first are exposed to chemotactic stimuli
diminish over time. Cells subsequently return to pres-
timulus behaviors although they remain in the presence
of the chemoeffector. Adaptation is necessary for detect-
ing new stimuli. For further information on chemotaxis,
a number of reviews [2,4,15,16] are available .

2.3. Molecular chemotaxis machinery

The signal-transduction network that mediates bacterial
chemotaxis allows cells to modulate their swimming
behaviorin response to changes in chemical stimuli. First,
sensors at the cell surface receive environmental stimuli
(Fig. 2). Signals are then converted to internal signals by
chemotactic transducers. Transducers can also directly
sense a variety of chemical stimuli [18]. After being
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Environmental Stimull

Signal Transduction network

Fig.2 Bacterial chemotaxis machinery. 1, and I, arechemotaxis
signals detected at present and recent past, respectively. Ar-
rows indicate signal flow through the elements of chemotaxis
machinery.

amplified and integrated, theinternalsignalsare transmit-
ted through the intracellular signal transduction pathway
to the flagellar motors. The components of the intracellu-
lar signal transduction pathway are chemotaxis proteins
which function to regulate phosphorylation and
dephosphorylation of a response regulator (CheY) that
interacts with the flagellar motor switch complex to con-
trol swimming behavior [16]. Protein methylation and
demethylation of transducer proteins is also caused to
adjust the level of excitation to the chemical stimuli.
Molecular analysis of chemotaxis genesin P. aeruginosa
was achieved only recently. We selected P. aeruginosa
chemotaxismutantsby theswarm plate method after NTG
mutagenesis [9]. These mutants were fully motile but

incapable of swarming, suggesting that they had a defect -

in the intracellular signalling pathway. P. aeruginosa
chemotaxis genes were then cloned by phenotypic com-
plementation of these mutants. We have currently cloned
a chemotaxis gene cluster which contains at least the cheY,
cheZ, cheA, cheB and che] genes (Fig. 3). The predicted
products of the first four genes shared high similarity with
the enteric Che proteins [16]. However, the che] gene
product had no significant homology with any known
protein species. Insertional inactivation of the
chromosomal che] gene rendered P. aeruginosa defective
in chemotaxis. Since the chromosomal che] mutant was
fully motile, the Che] protein is not a component of flagel-
lar apparatus. Che] may play an unexpected roleinthe
chemotacticsignal-transduction pathway in P. aeruginosa.

Biochemical evidence suggested that P. aeruginosa pos-
sesses approximately 73 kDa proteins that are covalently
modified by dynamic methylation and demethylation
reactions in response to L-amino acids [17]. To clone the
chemotactictransducergenesin P.aeruginosa, weselected
another mutant that is defective in taxis toward L-serine

but normal to peptone. A P. aeruginosa chemotactic
transducer gene, designated pctA, was cloned by comple-
menting this mutant. The PctA protein had the typical
structural features of methyl-accepting chemotactic
transducers (MCPs) in enteric bacteria [4]. The strongest
homology with the enteric MCPs was found in the *highly
conserved domain" (HCD) [8]. The chromosomal pctA
mutant was defective in taxis toward glycine, L-serine, L-
threonine and L-valine, indicating that PctA servesas the
chemosensor for these L-amino acids. Further sequence
analysis of thepctA region revealed the presence of atleast
two additional genes encoding MCP-like proteins. Our
current understandmg of the chemotaxis machinery in P.
aeruginosa is summarized in Fig. 3. :

3. Model for bacterial chemotaxis

‘To understand how bacterial intelligence arises from the

simple signal transduction network, a mathematical
model forbacterial chemotaxis was developed (Figs.4and -
5). The model presented here is designed on the molecu-
lar basis of E. coli chemotaxis which has been most inten-
sively investigated [15,18].

The transducer protein is likely to be involved in the
processes for measurement of current concentration, a
record of recent past concentration and a means for com-
parison [18]. Events through to occur at the transducer
can be presented as a model for a cycle of excitation and
adaptation (the upper part of Fig. 4). In the unstimulated
state [1], the ligand-binding sites are unoccupied. Occu-~
pancy of the ligand-binding site is a measure of current
concentration. Binding results in a shift in the state of the
transducer from [I] to [II] which generates a positive in-
ternal signal for a chemotactic response. This signal acti-
vates the dephosphorylation of CheA. Ligand binding
activates the methyl-accepting sites for a net increase in

Ser
Cys

Fig.3 Chemotactic signal transduction network in P. aeruginosa.
Thecomponentsoftheintracellularsignal transduction pathway
are chemotaxis (Che) proteins. CheR and CheW, whichare .
found to be involved in the E. coli chemotaxis system, have not
beenidentified in P. aeruginosa. The functionof Che] isunknown.
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methylation, thus setting the state of adaptation [II]. The
modification reactions are slow on the time scale of
" changes in occupancy, which is likely to provide a mem-
ory of recent past concentration. The balancing of ligand
occupancy and modification is likely to be a comparison
of current and past concentrations. Loss of ligand creates
a negative stimulus [IV]. In this state, demethylation is
activated, and the transducer is restored to the null sig-
nalling state{I]. CheR and CheB proteins are theenzymes
catalyzing methylation and demethylation, respectively.
Four cytoplasmic proteins, CheA, CheW, CheY and
CheZ, areinvolved in theintracellular signal transduction
(the lower part of Fig. 4). CheA, which is an auto-
“ phosphorylating kinase, is the central component of the
signal transduction network [16]. The phosphorylated
CheA transfers Pi to CheY, and the phosphorylated CheY
in turn biases the flagellar motor toward clockwise (CW),
resulting in a change of swimming direction [4]. CheZ
accelerates hydrolysis of Pi from CheY. The phospho-
rylated CheA also transfers Pi to CheB, increasing the
methylesterase activity. CheW is thought to couple a
primary signal received by the transducer to CheA.
Our model equations are simply the conservation
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equations for the components in the signal transduction
network (Fig. 5). On the basis of molecular evidence, the
first four differential equations (Fig. 5(a)) represent the
fraction of transducer in each of four states as a function
oftime. Theconcentration changesin chemotaxisproteins
as a function of time are given by the last six equations
(Fig.5(b)). The frequency of reversal of swimming
direction is assumed to be dependent on the value of the
ratio C /C, ., When theratio C is lower than 1.0, the
flagellar motor is biased toward gockwxse, resulting in
changeof swimming direction. Parameters, v, v,,, v,,, v,
Ver VayrVis Vi Vy V. and v, , are constant, while v,,, Vo and
v, are functxons g? Cor 6‘ and C,, respectively (see the
legend to Fig. 5).

It is best to determine the rate constants experimentally.
However, in vitro kinetic experiments with purified
proteins are time-consuming, and nosystematicstudy has
been reported on deterntining the rate constants. In this
preliminary work, the rate constants in the model
equations were adjusted to represent the general features
thathavebeenobserved in studies of sensory responseand
adaptation. The general features considered are: (i) the
response of a bacterial cell to a chemical attractant is
typically observed within 1 s after being subjected to the
stimulus; (ii) the time required for intracellular signal -
transduction is dpproximately 200 ms; (iii) adaptation
occurs less than 1 min after being subjected to stimuli; (iv)
the dephosphorylation of CheB is so fast that at most 10
20% of CheB remains phosphorylated; and (v) the half-
life of phosphorylated CheY is to the extent of 6-15 s in the
absence of CheZ. We also assumed that the ratio of C/
C,pi8 1.0 under the unstimulated conditions. Fig.6shows
the temporal change in the fraction of transducer in each
of four states, which occurs upon addition of a saturating
stimulus. The initial conditions and rate constants used
in this simulation are given in the legend to Fig. 6. Upon
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Fig.4 Schematic illustration of chemotactic signal transduction in E. coli [15,18]. In this model, chemical attractants
are directly sensed by chemotactic transducer proteins. Atr, attractant; P, inorganic phosphate (Pi).
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Fig.5 Mathematical model for bacterial chemotaxis. The model consists of the conservation equations for transduc-

ers (a) and chemotaxis proteins (b). Parameters, v,,, v,,, V,y Yoy Yoy Vor Yy
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addition of an attractant, there is a rapid shift in the state
of transducers from [I] to [II]. The subsequent increase of
C, indicates the adaptation of transducers due to
methylation. The time course of concentrations of
chemotaxis proteins, as well as the ratio C /C,

iltustrated in Fig. 7. The concentration of phosphory ated
CheY drastically increased approximately 200 ms after the
addition of an attractant. Then the dephosphorylation of
CheY proceeded, showing the adaptation to the stimulus.
These preliminary results encourage us to use the present

v Vi and v, are assumed to be constant.
an:{ k are comtant. Cbp(o) is the initial concen-

model for analyzing the dynamic behavior of bactenal
chemotaxis machinery. :
In real-life systems, the rate constants are determmed
by the biochemical properties of chemotaxis proteins
which are the products of the chemotaxis genes on the
bacterial chromosome. Therefore, there exist relationships
between the rate constants and the chemotaxis genes as
shownin Fig. 8. Taking into account these relationships,
we are now analyzing how chemotaxis proteins actin
concert to generate bacterial mtelhgence by means of "Ge-
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Fig.6 Temporal change in the fraction of transducer in each of
four states, which occurs upon addition of a saturating stimu-
lus. The initial conditions are: C,(0)=1.0, C,{0) =C (0)=C (0) =0,
C (0) = C,_ (0) =C (0) »1.0, C,_(0) =C (0} =C, (0) =C (0) =C (0}

(0) =0.5. Rate constants at’e: v, -335, v”-'O. V= 0.3, v = 6.2,

Vo= 0., f= 50, kim0.1, £,m 5.0, k = 20.0, k=50, £, = 9000,

£=500.0, v, =0.1, v,=0.05, v, =300, v, =15.0, v,=10.
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netic” Algorithms (GA). “Genetic" operations, including
crossover and mutation, are performed for thedigitalbac-
terial "chromosome” consisting of rate constants, The
intelligence of digital-form bacteria is then evaluated by
their chemotactic responsiveness which is predicted by
computer simulation. Particular attention will be paid to
the understanding of the mechanism by which a mem-
ory and a comparator function. We also expect in the
simulation study to seek out digital-form bacteria that
may exhibit unexpected intelligent behaviors. Evolution
of digital-form bacteriaisanother topicinour futuresimu-
lation study.

4, Concluding remarks

Our interest is not to simulate simple, well-characterized
biological events, but to address in molecular detail real
biological problems which are too complex to solve by
means of biochemical and genetic techniques. In the
present work, particular attention was directed to the use
of bacterial system as a model for studying the behavior
of living systems, Unlike viruses which can reproduce
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Fig.7 Time course of concentrations of chemotaxis proteins, as wellas the ratio C / C_, which occurs upon addition of

A

asaturating stimulus. Concentrations are shown by a normalized scale. The initial conditions and rate constants are

givenin the legend to Fig. 6.

— 367~



Digital Bacterla

Digiial bacterial *chiomosome’

BN EAEA A Y
K chor ke K ched dhadched chesched chet chad che¥
ke choWchow  chel et chal

- XX X L i X  d
cheA cheW 1 P e chet | oher
chey

E. colf chromosomal DNA

‘Fig.8 Evolution of digital bacteria. "Genetic" Algorithms (GA)
is used to generate crossover ard mutation in the digital "chro-
mosome” consisting of a set of rate constants. Thedigital "chro-
mosome” can be related to the chemotaxis genes on the E. coli
chromosome. Related genes are shown below relevant rate

constants.

only with the help of the cells they infect, bacteria are free-
living organisms and are still susceptible to biochemical
and genetic analysis. In free-living ofganisms, it remains
unknown how gene products act in concert to regulate the
whole system. The future of biology is in the analysis of
complex systems [19], and the behavior of complex sys-
temcannotbeunderstood simply by analyzing theexpres-
sion of individual genes. Therefore, the computer model
presented here should have great utility for extrapolating
biochemical and geneticanalysis of real-lifebehaviors. As
far as bacterial systems are concerned, the simulation re-
sults can be examined by biochemical and genetic analy-
sis. Conversely, findings from biochemical and genetic
analysis can provide ideas for improving the computer
model. Both the approaches are necessary to perfect the
understanding of real-life behaviors. We believe that the
approach described here is also helpful in presenting a
conceptual frameworkfor gaining theinformation needed
~ to sustain life.
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