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Abstract: This paper presents a Neural-Based Adap-
tive Control (NBAC) for the torque control of a flexi-
ble beam with structural uncertainties. In the NBAC,
a neural network (NN) is connected in parallel with a
linearized plant model, so that the NN is expected to
identify the uncertainties included in the plant. At the
same time the NN works as an adaptive controller that
can compensate for the unknown system dynamics.

At first, stability of the NBAC system including the
nonlinear NN is analysed and a sufficient condition of
the local asymptotical stability is derived by the Lya-
punov stability technique. Then, the NBAC is applied

to the torque control of a flexible beam that includes

linear and nonlinear uncertainties caused by a contact
force and by not exactly known shape and material of
the beam. Experimental results illustrate effectiveness
and applicability of the NBAC.

1 Imtroduction

In recent years, application of the neural networks (NNs)
to adaptive control has been intensively conducted [1}-
[5], since NNs have excellent capabilities of nonlinear
mapping, learning ability and parallel computations. For

example, Yabuta and Yamada [1] proposed direct adap-

tive control that replaces a feedback controller with NN,
Their method can be applied to various feedback control
systems, but stability property is not guaranteed. Carelli
et al.[2] proposed an adaptive controller that applies
NN as a feedforward controller in order to modify input
to the plant computed from the conventional feedback
controller. This method may maintain stability of the
system by the feedback controller, but uncertainties in
the controlled plant can not be expressed explicitly, even
if the inverse model of the controlled plant can be ob-
tained by learning. When the forward model is necessary,
the controlled plant must be identified again. On the
other hand, Narendra and Parthasarathy [3], Iguchi and
Sakai [4], Ku and Lee {5] have proposed another type
of adaptive control with two NNs, where one NN makes

up the forward model for uncertainties in the controlied.

plant and the other NN may compose the inverse model
by the NN’s training in order to control uncertainties.
However, these two NNs must be trained for a long time
and stability problems still exist in these methods.
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Fig. 1: Flexible beam in contact with an object

In this paper, we propose a Neural-Based Adaptive
Control (NBAC) that makes use of a NN for a plant
with uncertainties. In our approach, the NBAC uses only
one NN in order to identify multiplicative uncertainties
in the plant and modify the control input to the plant.
When a linear NN is used in the NBAC for a plant with
linear uncertainties, local asymptotical stability can be
guaranteed [6].

This paper is organized as follows. At first, stability
of the NBAC system including the nonlinear NN is anal-
ysed and a sufficient condition of the local asymptotical
stability is derived by the Lyapunov stability technique.
Then, the NBAC is applied to the torque control of a
flexible beam in contact with an object.

As shown in Fig.1, the joint torque of the flexibel beam
is controlled in accordance with a reference signal. The
contact point between the flexible beam and the object
can be detected by active motion of the joint[7}- [9]. So,
if the joint torque can be controlled, the force applied
to the object can be also controlled. Dynamics of the
system under consideration nonlinearly depends on the
material and the shape of the beam, the external con-
tact force and on the contact friction [7]- [9]. Since the
beam’s stiffness at the joint is varied by the distance
between the joint and the contact point on the object,

‘it is not possible to obtain the exact dynamic model of

the system beforehand. Note that the precise torque
control is very difficult and often conventional control
schemes do not work well due to nonlinear uncertainties .
and parameter’s perturbation. Finally, applicability of
the NBAC to the torque control of the flexible beam
is tested under experiments. The experimental results
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- demonstrate effectiveness of the control scheme.

2 NBAC Approach

2.1 Plant model

Consider a nonlinear discrete-time plant described by the
following single-input-single-output form

y(k) = He (2~ Yu(k) + f(u(k)), (1)
where u(k) and y(k) are the input and the output of
the plant, respectively; f(u(k)) represents the nonlinear
part; and Hp(z~*)u(k) represents the linear part of the
plant. The linearized model Hy(z~1) is further supposed
to be divided into the nominal model Hz, (z 1) and un-
certainties Ar,(z~1):

o H(T = HLa(z“l)"'ALa(z"l)»
where z~! stands for the delay operator.
As to the nonlinear part f(u(k)), it is assumed that
its linear approximation is given by .
F(u(k)) ~ H* (7 yu(k) 3
By egs. (2), (3), the plant dynamics (1) can be repre-
. sented as

2

y(k) ~ Ho(zyu(k) + H (=" )u(k)
= HEu(R), (4)
H(z™Y) = Ha(z)1+4ag(z"")] (5)
H,,(z"l) = HLa(z’l)fi-H"(z'l), (6)
: -1
aa(h = P, ™

where H,(z~!), Ag(z™') are respectively the known

nominal model and the uncertainty in the plant (1).

Let us assume that the structure of the H,;(z"l) and
Ap(z~1) can be described by the following expressions:

H,,(z“l\); %%;}%, ®

A,,(z“*) = 1+2:1a, , (9)
&

?»(z"") = z;'bsz“ (n2m),  (10)

An(l) = {E—i-gﬁ‘—fg. v

As(z"Y) = 1+§h:1a,-z"i, (12)
i=

Ap(z"Y) = éﬂez“ (h20,  (19)

where H,(z~1) is controllable; Ag(z™1), Ap(z~!) in-
clude unknown coefficients a;, Bi; and I(< n), A(<
m) are unknown orders of the polynomials AA(z‘l)
Ap(z~1). Note that appearance of the uncertainties in
the plant dynamics is changed from the additive form (4)
to the multiplicative one (5).

2.2 Adaptive Control Scheme

The block diagram of the NBAC of the discrete-time
plant with uncertainties (1) is shown in Fig.2, where r(k)
is the reference value and e(k) = r(k) — y(k) is the error
between the reference value and the output. The output
§(k) of the identification model is a sum of the nominal
model output y.(k) and the identified output y;p(k).
yip(k) is the NN’s output yn~(k) passed through the
model H,(z~!). The NN is trained using the identified
error (k). Thus, the input u(k) is regulated by
u(k) = un(k) — ynn(k). (14)
Now, the performance of the NBAC system can be
explained as follows.

Fig. 2: Block diagram of the NBAC

First, consider a special case when there are no un-
certainties in the plant (1) (Ay(k) = 0). The controller

.Gp(z™?) for the model H,(z7!) is designed to produce

a desirable response. The closed loop transfer flmctmn

Fn(z‘l) is described as ‘
G,,(z—l)H,,(z-?l)

14 Ga(z=1)Hg(z~1)’

Fu(z_l) = zg:;

Next, consider the generai case of Ay (k) # 0 In Fxg 2,
the controller Ag(z™!) is defined as

(1)

G(z™") = Gu(z~ N1+ As(="Y)], (16)

where Ag(z~1) representé the modified value of the con-
troller G(27!). Thus, the closed loop transfer function
F(z71) that consists of H(z~') and G(z~!) can be given
as ‘
Gz H(z"Y) :
1+ GEOHE) an
If (15) and (17) are equal, the response by H(z™!) and

G(z~!) can accord with the desired response [6]. In this
case we have :

F(z“l) =

Ag(é‘i)

iy oo
A i vy v ey g

(18)
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Fig. 3: Neural network used in the NBAC

On the other hand, by eq. (16) the input u(k) =
G(z~)e(k) can be represented as

u(k) = Ga(z7")e(k)+ Au(E),

Bull) = AolGa(s™)e(h).

- (19)
(20)
By eq. (5), the output y(k) beg:omes
y(k) H, (2“1)“(") + H,,(z"l)A,(k), (21)
Ay(k) = Ag(z~V)u(k), (22)

where Ay(k), Ay(k) are respectively the modified value
of the input and the output of the uncertainties.
Substituting eqs. (19), (20), (22) into (18) yields

Au(k) = —Ay(k). (23)

In the NN’s training process, the identified error
(k) = y(k) — y(k) can be described by

e(k) = Ha(z""){ynn(k) — Ay(F)}. (29)

If the NN is well trained, we can expect yyn (k) = Ay(k).
By egs. (23), (24), we know that the response of the
control scheme shown in Fig.2 agrees with the desired
response when Ay (k) = —~ynn(k) is used (see eq.(14)).

2.3 NN Scheme

The multi-layer NN scheme in the NBAC is shown in
Fig.3. The number of units of the input layer and the
hidden layer are N and M, respectively. The number
of units of the output layer is one. In Fig.3, wy;(k)
represents the weight’s element that connects the unit
j of the input layer and the unit { of the hidden layer;
v;(k) represents the weight’s element that connects the
unit 1 of the hidden layer and the output layer’s unit;
W(k) € RM*N vV (k) € RM*! are the weight matrices
of the hidden layer and the weight vector of the out-
put layer, respectively. By Fig.2, the NN’s input vector

Uln (k) =lui(k), uz(k), - ,“N(k)] € R™¥ jg defined as
UfN(k) {u(k)s u(k - I)) T su(k - 1))
Av(k - 1)1 Tty Ay(k - h)]» (25)

where N =14 h + 1.
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Fig. 4: Sigmoid function used in the NN

Let- the unit 3 ’s output of the input layer be I;
uj(k) (j = 1,.--,N), the unit i’s output of the lndden
layer be H; = a(s,) 8 = jv_'_lw,,l,, and the sigmoid
function be o(z) = ltanh(yz). Here v is the positive
parameter related with the shape of the sigmoid function.
Fig.4 shows the input-output relation of the sigmoid
function. When ¥ < 0.1 o(z) can be approximated by
the linear function and when v > 1 o(z) is the form of
the tanh function. In the same way, let the umt s output
of the output layer be Op = o(x), &= Z

Let the energy function be J(k) = 563(}:) In the
NN’s training process, the energy function is minimized
by changing the weights w;; and v;. According to the er-

ror back propagation algorithm [10], the weight updating

rules at one sampling time can be described as

V(k+1) = V(k)-nH,,(z"l)e(ic)ag‘:,’z}(c‘;’) (26)
W) = W) - it e(k) ) o)

where 1 > 0 is the learning rate.
2.4 Stability Analysis
The NBAC scheme shown in Fig.2 can guarantee the
local asymptotical stability when the parameter ¥ of the
sigmoid function is relatively small and the plant includes
linear uncertainties only. In this case the nonlinear NN
can be reduced to the linear one [6]. This section will
mainly deal with the local asymptotical stability for the
plant (5) near the optimal value of the weights of the
nonlinear NN with the sigmoid function. If the multi-
layer NN is used, there exists the optimal set of the
weights that makes the identified error (k) zero {11].
Near the optimal values of the weights, the NN’s out-
put ynn (k) can be linearized by

ynn(k) = VI (YW (KU 1n (),

where g > 0 is the gradient of the sigmoid function.
On the other hand, by egs. (11), (22), the output
Ay (k) can be written as

(28)

Ay(k) = [Eﬁ. ~u(k) - [Zaﬁ 7)Ay (k)

$=0
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= 6TUNn(k), (29)
where 8 = [By, B1,-++, B, —y,- - ,-a;,]Te RNX1 jg the
parameter vector. Thus, the identified error e(k) in eq.
(24) becomes

e(k) =

Ha(z" )T (B)U I (k), (30)

where

@7 (k) = gVT(k)W(k) -6 eR™N, (31
is defined as the parameter error.

From Fig.2 and eq. (30), it follows that if the iden-
tified error ¢(k) can be asymptoticaly stabilized, then
the asymptotical stability of the NBAC system can be

guaranteed. In order o assure stability of the identified

error, stability of the parameter error (k) should be.

guaranteed.
Consider a Lyapunov function ¥(k) of the following
form -

¥(E) = T (k). (32)

When the difference A¥ < 0, the asymptotical‘ stability
of the parameter error (k) can be guaranteed by the

stipulations of the Lyapunov’s method. If the NN is.

trained until e?(k) = 0, the sufficient condition of the
local asymptotlcal stabxhty is to choose the learning rate
n as

""gcu““‘_“czmum ‘>">°’ (33)
(= sup |HXeT)), (34)

G<w o0
(35)

Rkl = . 5&1’:& &{Q(k)},

(Proof: see Appendix)
where kr is the learning time, T is the sampling pe-
riod, & is the maximum singular value of the matrix
Q(k)e RM*N given by

Qk) = Umn(RDUInk)WT (k)21 (k)W (k)

VIR R(R)V(RUTN(E). (36)

The diagonal elements wy;;(k), waeii(k) of the diagonél
matrices §2y(k), £22(k) are given as

o) = T G = 0t s =0), (31)
wil®) = o (K)o (s3), (38)

where o (-) is the derivative of ¢(-). Now, the condition
(33) can be satisfied when the smaﬁ positive lea.rmng
rate is chosen. .

3 Torque Control of a Flexible Beam
3.1 Experimental Device

An experimental device for the torque control of a fiexible
beam is shown in Fig.5 [9]. The beam is plastic, 0.25 m
length, 2 mm across in diameter. The torque sensor is
made of a semiconductor gauge glued on an aluminum
sheet. When the beam contacts with a fixed object, the
torque 7 at the joint of the beam can be measured by the
torque sensor. The actuator is velocity-controlled with
the reference angular velocity of the joint being assigned
by computer. It should be noted that driving torque
of the actuator can not be controlled directly. Since
the experimental device includes various nonlinear and
unknown uncertainties, it is very difficult to obtain the
exact dynamic model of the beam in contact with the
object. The rotational stiffness of the beam is largely
changed depending on the position of the contact point.
When the distance from the joint to the contact point
is small, the rotational stiffness is increased. When the
contact point goes away from the joint, the joint becomes
less stiffer. Thus, the parameters in the experimental
device are largely varied by the position of the contact
point, -

Fig. 5: Experimental setup for torque control of a fexible beam

* In this section, first the nominal model being used in
the NBAC is identified. Let the reference angular veloc-
ity 84 be the input to the flexible beam, so the transfer
function from @4 to the torque r at the joint can be
approximately described by

K,K, ‘
s(T_fs -+ I) ! (39)
where K, is the gain; K, is the elastic constant of

the beam; and T; is the time constant of the velocity-
controlled system. Sampling eq. (39) yields

Hu(s) =

bzl 4 byz—?
14a12z71 +a32—2%

Hy(z"Y) = (40)
In order to identify the parameters of eq. (40), the
contact point L= 0.18m is specified and fixed to the
environment, .

Let the amplitude of the input signal 8 be 2.0 x 10~*
rad/s and the period be 0.5s. The joint torque is mea-
sured on-line with the sampling frequency 100 Hz. The
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identified values of the model parameters are 4,=-0.5024,
4=-0.4982, b, =0.0178, b,=0.0191. The response of the
nominal model with the identified parameters is shown
in Fig.6 by the thick line. From Fig.6, we see that the
error between the response of H,(2~!) and the response
of the flexible beam is increased in time.

—— e L=0.14
..... wal =022

Torgque, ¥(k) [x10*Nm]

Fig. 6: Responses of the nominal model and the flexible beam

For the casé when only the fixed position L of the
beam is changed, the result of measurement is shown in
Fig.6. Here, the dashed line represents the result with
L= 0.14m and the dotted line represents the result with
I= 0.22m. From Fig.6 we see that if the position L

" is changed, the joint torque is varied larger than the
response of the nominal model with L= 0.18m.

3.2 Experimental Result

The NN used in the experiments consist of 4 units in the
input. layer and 4 units in the hidden layer. The initial
valie of the weight is the uniform random number in
[-1.0 x 10~3,41.0 x 10~9]. The learning rate is y=0.05
and the parameter « of the sigmoid function is y=1.

In the control system, let the desired joint torque 74 be
of a rectangular form with amplitude 2.0 x 10~5Nm and
the period 5s. The controller G,(z~1) is G,(271)=3,
and the control duration is 100s. The NBAC is applied
to 5 different. contact points L =0.14, 0.16, 0.18, 0.20,
0.22m. .

Fig.7 shows the experimental results, where Fig.7(a)
corresponds to the case of L=0.18m, Fig.7(b) does to the
case of L=0.14m and Fig.7(c) to L=0.22m. In Fig.7, the
fine lines represent the results corresponding to the use of
the P control only. The thick lines represent the results
obtained with the use of the NBAC. The dotted lines
represent the reference value r(k). In Fig.7 (a), due to
the fact that the same value of L is used for identifying
the nominal model, the experimental results obtained
with the use of the P control and the NBAC are not
different. .

However, when L is varied (Fig.7(b) and (c)), the P
control produces significant overshoot and undershoot.
As can be seen from the experimental results, the NBAC
designed for the nominal model with L=0.18m always
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Fig. 7: Experimental results of the {orque control

produces stable response. It can be concluded that even
there is a large error between the nominal model and
real parameters of the flexible beam, the stable response
is always obtained.

4 Conclusions

In this paper, a Neural-Based Adaptive Control (NBAC)
of discrete-time plant with uncertainties is proposed.
The governing equation of the NBAC are derived, and
the sufficient condition of the local asymptotical stability
near the optimal weight is obtained. The NBAC with
only one NN can identify and control the plant at the
same time. The NBAC is applied to the torque control of
a flexible beam in contact with the external environment.
Even though the parameters of the flexible beam are
largely varied, the precise control can be realized. Exper-
imental results illustrate effectiveness and applicability
of the NBAC. In future, we plan to extend the NBAC
method to a general nonlinear plant by represented as a
multi-variable system.
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Appendix

Near the optimal value of the weight, the updating
weight rules (26), (27) with the sigmoid function can
be approximated as follows

V(E+1) = V(k)—nHa(z"")

(R) 2 ()W (YU n(k),  (41)
W(k+1) ~ W(k)—nHa(z"")
(k) 2()V(K)UTN(F),  (42)

where the diagonal elements are jwyu(k)] < M; =
constant, fwyi(k)] < My = constant. The sigmoid is
of the tanh function, so the £2,(k), £22(k) are bounded
matrices. -
By egs. (41), (42), assuming the identified error to be
sufficiently small, we get
VI(k+ 1)W(k+1) .
= [VT(k) — nHa(z~)e(R)U TN (FYWT (k)24 (k)]
- [W(k) - nHa(z"")e(k)22(k)V (E)U Ty (k)] -
~ VIE)W (k) — nHa (2" Ve(k)
W)W (k)21 ()W (k)
+VI ()2 (F)V (1)U Ty (R)].
Substituting eq. (30) into eq.(43) yields
VI(k+1)W(k+1)
r VI(E)W (k) — nH2(z~ ) (B)U rn (k)
Win )W ()21 (EW (k)
© VIR DRV (U (H)]
= VI(E)W (k) — nHi(z7")e7 (£)Q(k).
Then substituting eq.(44) into (31) yields
GTk+1) = oVI(k+1)W(k+1)—67
= ¢ (k)L ~neH2(z"")Q(E)], (45)
where T' € RV*¥ jis the unit matrix. So, A¥ can be
written as

AV

(43)

(44)

¥(k+1)- (k)
= T (k)L - neH2 (=) Q()] ,
[T — neH3 (= 1)Q" (k)lw(k) - »7 (k) (k)
= —neH(z7)e" (B)Q(K) + QT (k)
~neH3(:™)Qk)Q (W)p(k). (46)
When the learning rate 5 satisfies to the following ex-
pression

Q(k) + QT (k) ~ neH (=" )Q(K)QT(K) > 0,  (47)

The condition of A¥ < 0 can be guaranteed.

Next, we derive the condition that the learning rate n
satisfies (47). Using the matrix norm, eq.(47) becomes
(12]

IQ(E) + QT (k)lleo > nellHA(=")Q(R)QT (k)|loo- (48)
Defining Q(k) to be positive semi-definite matrix yields

IRK) + QT (k) = NQ(kMioo + QT (k)lleo

= 2Q(K)|lco- (49)
Finally, eq.(48) can be represented as
2Rkl > n{llQ(k)l0 },
2
m >n>0. (50)
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