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Pattern Classification of EEG Signals Using a Log-linearized
Gaussian Mixture Neural Network

Osamu FUKUDA, Toshio TSUJI and Makoto KANEKO
' Faculty of Engineering, Hiroshima University
~ email: Fukuda@huis.hiroshima-u.ac.jp

ABSTRACT

In this paper, we propose a patiern classification method of EEG (electroencephalosnm)
signals measured by a simple and handy electroence phalograph to evaluate possibility of the
EEG signals 2s a human interface tool. Subjects are asked to switch their eyestates or exposed
a flash light turning on and off alternatively according to pseudo-random series for 450 seconds.
The EEG signals are measured during experiments and used for classification. Each EEG
signal msay have different distribution depending on two states of the stimulation such as eye
opening/closing and presence/absence of the flash light. Therefore a Log-linearised Gaussian
Mixture Neural Network (LLGMN) incorporated a statistical model is used. It is shown from
the experiments that the EEG signals can be classified sufficiently and classification rates change
depending on the number of training data and the dimension of feature vectors.

1. Introduction

. An EEG signal pattern is changed by external or
internal factors such as photic stimulation, auditory
stimulation, and intentions of movements, which
may be used as an interface in a virtual reality and
a teleoperstion, or a communication tool for handi-
capped person, if an operator’s intended movement
is estimated from the EEG patterns. Up to the
present time, some investigations of EEG psttern
classification using neural networks have been car-
ried out [1][2]. Most of them, however, were moti-
vated to develop an automatic diagnosis in a clinic,
and few studies to develop a new interface tool were
carried out [3]. In case of the pattern classification
of unclear EEG signals using back propagation neu-
ral networks (BPN) [4], the networks need a large
number of training data, learning iterations, and a
large scale of structure. Therefore, it is very diffi-
cult to attain high classification performance. Re-
cently, the neural networks with incorporated prob-
ability density function (pdf) has atiracted consid-
erable attention.

In this paper, a pattern classification method of
EEG signals using neural networks with an incor-
porated pdf model is proposed. The network used
here can acquire the pdfinformation of sample data
through training. Using the networks, the pattern
classification of EEG signals are carried out under
photic stimulation by eye openmg/cionns and an
artificial light.

0-7803-2768-3/95/$4.00 © 1995 IEEE |

2. Log-linearized Gaussian Mixture
Neural Network '
2.1. A Network Structure

Generally, an input for a pattern classification prob-
lem can be considered as a stochastic variable with

‘a certain distribution. In this case, the pattern

classification problem usually reduces to an estima-
tion problem of a pdf, since the classification can
be performed according to the Bayes decision rule
if & posteriori probability of the input pattern is

‘obtsined accurately. Consequently, incorporating

an estimation procedure of a pdf into neural net-
works improves a generalisation ability, thus high
classification performance can be expected.

Tsuji et al. [5] proposes a Log-linearized Gass-
sian Misture Neursl Network (LLGMN) based on
the Gaussian Mixture Model (GMM) for pattern
classification problems. By applying the log-linear
model to a product of a mixture coefficient and
s mixture component of the GMM, a model of a
pdfcan be incorporated into the feedforward neural
network and s simple learning algorithm based on
the back propagation is still applicable. Based on
the pdf model incorporated by learning, the LL-

‘GMN can estimate posteriori probabilities of the

input data that are not used in learning. Also, the

- network structure such as an activation function of
each unit, & poumber of layers and a number of units

can be determined by the corresponding structure
of the GMM incorporsted in the network.

Figure 1 shows the structure of the LLGMN,
which is of a feedforward one with four layers. First,
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the input feature vector @ = [£1,23, -+, z4]7 € RS
is preprocessed and converted into the modified in-
put vector X € RF (H = 1+ d(d+3)/2) according
to (1) in order to represent the pdf corresponding to
each component of the GMM as a linear operation
of X [5):

2
[1: 3T» 32, 23, , 2124, T3, 22738,
."'z::"c .o 'ZZ]T.

x
®

The first layer consists of H units corresponding
to the dimension of X and the identity function is
used for the activation function of each unit. The
second layer receives the output of the first layer
weighted by a coefficient wi*™). The input to the
unit ék, m} in the second layer, Yi,m, and the out-
put, (O, 1, are defined as

H
Yk.m‘ = Z (')Ouwg"m).
Al

@)

(2)0”“ = — exp{Ys m}

K My .
Y 3 explYim]
F=1m'=1
where ()O; denotes the output of the j-th unit in
the first layer and ng’”") =0(h=12-..-,H).
It should be noted that (3) can be considered as &
kind of generalised sigmoid functions.

Finally, the unit k integrates the outputs of M;
units {k,m}(m = 1,--., Mx) in the second layer.
The relationship between the input and the output
is defined as

)

"

5 = E(’)ot'm ()]
- m=l )

®o, = O, (5)

Each unit in the second layer of the LLGMN
corresponds to each component of the GMM incor-
porated in the network [5]. Therefore the second
layer consists of the same number of units as the

Fig. 1: Structure of an LLGMN

total component number of the GMM and its out-
puts (3) represent the posteriori probability of each
component. The third layer consists of k units cor-
responding to the number of classes and outputs the
posteriori probability of the class k (k= 1,- .-, K).
In the LLGMN defined above, the posteriori prob-
ability of each class can be calculated based on the
log-linearized Gaussian mixture structure incorpo-
rated in the network by learning only the weight
coefficients w{*™ between the first layer and th
second layer. . :

2.2. Learning Rule ‘ } _

Now, let us consider a supervised learning with
a teacher vector T™ = [T™,..., ™, T
for the n-th feature vector X(™. If a teacher pro-
vides a perfect classification, T,f”) = 1 for the par-

‘ ﬁcnludmkmdﬂ”):Oforaﬂotherclm.

The network is trained using a given set including
N data X (n = 1,---,N), where the output

~ )0, of the LLGMN corresponds to P(k|X(™). As

an energy function for the network, we use

N N K
I=Y la==3 Y10 (8)
n=l ns=l k=1
and the learning is performed to minimize it, that
is, maximise the likelihood. _
For X™), a weight modification Aw(*™ of the

corresponding weight wg'"") (h=1,...,H) is de-
fined as’ ‘

LAY
n
~M z au’z},mi*
A

n=1

K

(x,m) (- 52: Tﬁ”) 308(8) O&)
8 Wy =1

®o '
(®0sm ~ a2 TMIX( (8)

&,
Aw£ " =

™

87, - 8
w{*,“) =

——
—

in a collective learning scheme, where gy > O is a
learning rate. :

It can be seen from the learning rule (8) that
the teacher signals, which are given for classes, are
back-propagated to each component according to
the ratio of the posteriori probability (20, ,, of
each component to the posteriori probability ()0,
of the class k.

In the present paper, dynamics of a terminal at-
tractor [6] is incorporated in the learning rule in
order to speed it up. The terminal attractor is
based on a concept that the Lipschits conditions
are violated at the equilibrium point. The dynam-
ics converges to the equilibrium point in a finite
specified time.
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A weight w (*”")uconmdereduahmedepen
dent contmuous variable and its time derivative is
defined as

o™ = -m‘r;—u%,;;,;;. (9)
A

Y= r .

233 ()

where n; > 0 is a positive learning rate and 8 (0 <
B < 1) is a constant. The time derivative of the
energy function J can be calculated as

(*.m)
w‘ 'm

From (11), it can be seen that J is a monotoni-
cally non-increasing function, and always converges
_stably to the equilibrium point (the global mini-
mum or one of local minima). In this case, the
convergence time can be calculated as

‘l Iy dJ Jl", J"’

/ ./ T Tm-f ﬂ)
l”ﬁ

s 'Iz(l m(1 - )’ (;2)

where Jp is the initial value of the energy function J
calculated using initial weights, and J; is the final
value of J at the equilibrium point. In the case of
J; = 0, the equal sign of (12) is held. Thus, the
convergence time can be specified by learning rate
72. On the other hand, in the case of J; # 0, the
convergence time is always less than the upper limit
of (12). In this paper, the learning is carried out by
a discrete form of (13) derived from (9):

535 (2

A=l k=l m=1
= —mpt?<o.

Gy =

(e
(13)

W+ A = wft™)+ Sl

+&{"™(t + A1),
where At denotes a sampling time.

3. Pattern Classification Method of
EEG Signals

3.1. Experimental Apparatus

To evaluate poesibility of the EEG signals as a hu-
man interface tool, a simple and handy electroence
phalograph (IBVA, Random ELECTRONICS DE-
SIGN) is used, which enables us to measure EEG

(1)

signals in usual environments. This system consists
of a head band, a transmitter, and a receiver.

The transmitter is attached to the head band.
The EEG signals measured from the electrodes are
digitised by an A/D converter (the sampling fre-
quency =120Hz, quantisation = 8bits) after they
are amplified and filtered out through high-pass
(3Hs) and low-pass (40Hz) analogue filters. The
sizse of the transmitter is quite compact (93mm x
5imm x 25mm). The personal computer, which
is connected to the receiver, collects data. The
surface electrodes are located at Fpl and Fp2 that
are specified by the International 10-20 Electrode
System. Some noise contained within the EEG can
be removed significantly by bipolar derivation be-
tween two electrodes at Fpl and Fp2.

3.2. Experimental Conditions

In this paper, the EEG signals are measured under
two kinds of conditions as follows:
[1] Photic stimulation by opening and closing eyes
Subjects have a rest on a seat in a computer
room. First, EEG signals are measured during both
-eye opening and closing (60 seconds for each). The
measured signals are used for training data. Next,
subjects are asked to switch their eye states alter-
natively according to the pseudo-random series for
450 seconds.
[2] Photic Stimmlation by an artificial light
Subjects have a rest on a seat in a darken com-
puter room, and open their eyes. A flash light
(xenon, illuminating power:0.176[J]) is set at a dis-
tance 50 cm apart from their eyes, which turns on
and off with 4Hs.

Table: 1: Frequency range used in the classification experi-

ments
Disension of the inpat vecter —
i% A P
d=3 { d 21 o N -
i 9 -~ - -
!-ﬂ 12 at -
o w G2t 3og} Sog | 912 21~33
Elomvnts of hsinpmtvoctes [ x| x5 | x X g X3 X 5

A power spectral density function of the mea-
sured EEG signal is estimated using FFT of every
128 sampled data. The power spectral density func-
tion (from 0 to 35Hz) is divided into several ranges,
frequency bands of which are prepared based on the
clinical use of the brain wave (delta, theta, alpha,
beta). Time series of mean values of the power spec-
tral density function within each frequency ranges
are calculated, and normalised between [0, 1] in
each range. Thus dimensional data (z3, 3, - -+, 24)
ueobtunedandmeduthempntvectoraftbe‘
networks, where d denotes the number of frequency

2481



ranges. The frequency ranges used in this paper are
shown in Table 1.

3.3. Pattern Classification Using Neural Net-

works

To compare the LLGMN with other neural net-
works, the patiern classification experiments are

" carried out using four types of the networks: the

LLGMN, the MLANS (Maximum Likelihood Arti-

ficial Neural System) [7] which was developed by

the direct use of the GMM, and two types of the
BPNs with one or two hidden layers.

Learning for the LLGMN is carried out using (9),
(10), (13) (8 = 0.5,At = 0.01,¢; = 50). In the
MLANS, learning procedure is continued until a
Bhattacharyya distance [7] of the posteriori proba-
bilities with an iteration becomes less than 0.0001.
On the other hand, in BPNs, learning procedure
is continued until the mean squared error becomes
less than 0.1. However, if the mean squared error
after 50000 iterations does not reach less than 0.2,

learning procedure is stopped.

4. Evaluation of Classification Ability

4.1. EEG Classification of Eye States
A) Classification ability of the LLGMN

.m(sl

L 100

Fig. 2: Anwammtamw
by the LLGMN

To examine the classification ability of the net-
works, experiments are performed for five subjects
(A, B, C, D: male, E: female). Each network is
trained using 112 data (56 for each class). Then,
the ratio of the correct classification to 422 data
that are not used in learning are computed.

The input vector is two dimensional data for two
classes shown in Table 1 (d=2, =6, K=2). The
LLGMN includes six units in the second layer which
is corresponding to the total component number of
GMM; six in the input layer; and two in the output

Table: 2: Classification results of eye states

Selbject [ — PN wit MLANS|LLOM
3 hiddun lager 12 biddes luyors ‘
A [Classlficutiom mea(%) k3 "3 858 | o1t
(male) _ ki 131 34 21 | o4
: Camvargyon: 53 6.7 1009 § 1000
B |Cusification sutef! J52 344 8118
(male) $.1 3t 03 1 06
| Comvarpm o 3 o3 1000
€ {Chmificetion ne =7 CTRECTN
(wale) [ Somdend dovistion 54 27 04 | 14
Comwery L) 00 B3| 1000} 000
D 1Camifio (% 2 1] 005 1 813
(aele) | Stnndend devission 8.7 3.7 [T IRY)
—{Comrecpon 367 00 3008 1 1000
Lo .+ ! %3 »1 08 91,
Semale)) Semdand dovin 67 3L 18 § 05
Coavergs 567 o0 1 100 ] 000

Isyer. Figure 2 shows the classification result by the
LLGMN (subject A).

In the figure, the timing of switching eye states,
the input pattern of the LLGMN (z;, 23), the out-
put of the network ((00,,(® 0,) and the classifica-
tion results are shown. Iu this case, the LLGMN

jects. The BPNs with one or two hidden layers
include two units with the identity activation func-
tions in the input layer corresponding to the dimen-
sion of ; fifteen units with the sigmoid functions in
each hidden layer; and two units with the sigmoid
functions in the output layer. The mean values and
the standard deviations of the classification rate for
30 kinds of initial weights which are randomly cho-
sen are shown. The convergence rate is defined as
theratloofthennmbetofconvergedlwningtofio
trials.

As a common result of all subjects, the conver-
gence rates of the MLANS and the LLGMN are
greater than the ones of the BPNs. In the BPNs
with one or two hidden layers, the mean values
of the convergence rate are always less than the
one of the LLGMN. In this experiment, the con-
vergence rates of the MLANS and the LLGMN are
100 percent. Also, the standard deviations of the
classification rates of the LLGMN are quite small.

B) Changes of the clasnﬁcatmn rates with
the tmmmg data

Next we examined the changes of the classifi-
catmnratsmththenumbuofthetrumngdm
N and the dimension of the input vector d shown
in Table 1. For each input vector, the number of
training data N are changed from 10 to 100.
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Number of 3 50 Number of the
the input vector, d 2 110 training data, N
b) Standard devistion

Fig. 3: Effect of the training data on classification results of
eye states by MLANS

Here, the pattern classification experiments are
carried out using the LLGMN and the MLANS .
Both networks are trained using fifty sets of the
training data (N = 10,20,-.-,100,d =1,2,---,5).
Then the ratio of the correct classification to 422
data, which are not used in learning, is computed.
Figure 3 and 4 show the mean values and the
standard deviations of the classification rate for
ten kinds of initial weights by using LLGMN and
MLANS, respectively. Although both the networks
can achieve high classification rate for large number
of training data, the difference becomes clear as
the number of the training data decreases. The
LLGMN keeps the classification rate high even for
small sample sizse of the training data, whereas
the classification rate of the MLANS decreases.
Note that the covariance matrices included in the
MLANS could not be estimated in some cases (N =
10, - - -, 40), because the number of the data belong-
ing to each component decreases remarkably when
the number of the training data is small. The statis-
tical structure incorporated in the LLGMN realises
considerably high classification ability for a small
sample size of the training data. A

Also, the classification rates of the LLGMN with
sufficient number of the input vector d show a ten-
dency to be high, even if the number of the training
data decreases. On the other hand, the classifi-
cation rate of the MLANS decrease considerably
in those cases, and the standard deviations of the
classification rates are much greater than thoee of
the LLGMN.

Fig. 4: Bffect of the training dats on classification results of
eye states by LLGMN

[11]

1 : 1
]
X3 ‘ Bx D
os bk " 05+
s}
Xe: 0309 & 0.168 X1:0.130 + 0.066
X3:0.575 + 0.095 X2:0.551 £0.134
0 i 0

L
0 0.5 x i € 05x 1
) With aetificial photic simulation b} Withowt artificial photic stiovletion

Fig. 5: Scatter diagrams of EEG data under the photic stim-
aleo shown in the figures

4.2.EEG Classification of the Artificial
Photic Stimulation

Next, the pattern classification experiments are
carried out under the artificial photic stimulation.
Two dimensional input data (d=2 in Table 1) are
shown in Figure 5, in which 100 data (50 for each
class) are plotted. The distribution of the input
data is changed according to presence or absence of
the artificial photic stimulation and it seems to be
difficult to classify the data into the different clasees
because of overlapping between classes. |

Table 3 shows experimental results for five sub-
jects. The dimension of the input vector d = 2,6
and the number of the training data N = 50,100
are used. Then, the ratio of the correct classifi-
cation to 422 data, which are not used in learn-
ing, is computed. Compared to the classification
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Table: 3: The classification results under the artificial photic

stimulation
N-ﬂi N =100
dwsl d=ll d=s

1.7

subject D} Clossification rate() | 67.40 724 744 767
Stndesd deviation 3ot 12 21 17
sebject E| Claasification 617 N6 738 755
Standerd deviation 42l 17l 28 12

Fig. 8: Effect of the training data on ciasification results of

result of eye states, the classification rates under
the artificial photic stimulation decrease. Although
the difference among individuals can be obeerved,
the classification rates tend to improve with the
increase of the number of the training data from
N =50 to N = 100 and the dimension of the input
vector from d = 2 to d = 6. Also, the standard de-
viations of the classification rates tend to decrease.
Figure 6 shows the effect of the training data on
the classification results of subject A. The classifi-
cation rates improve with the increase of the dimen-
sion of the input vector. On the other hand, any
improvement of the classification rates depending
on the number of the training data are not cbserved.
It may be understood that a small sample size of the
- training data is enough to construct the statistical
model, because the EEG pattern of subject A is
quite stable during the experiment. -

5. Conclusion

In this paper, experiments were carried out to eval-
uate classification ability of the LLGMN for EEG
signals. The results obtained here are summarized
as follows:

¢ The EEG signals measured by the handy elec-
troence phalograph can be classified by the LL-
GMN with sufficient accuracy.

o The neural networks that are incorporated a
kind of the statistical model can improve the
classification rate and the convergence rate.

o The classification rates tend to improve with
the increase of the dimension of the input vec-
tor and the number of the training data.

Future research will be directed to developing
some techniques to incorporate dynamic changes of
the EEG characteristics into the neural network.
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