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ABSTRACT
The present paper proposes a new probabilistic neural network based on a log-linearized Ganssian mixture mode},
which can estimate a posteriori probability for pattern classification problems. Although a structure of the
proposed network represents a statistic model, a forward calculation and a backward learning rule based on the
maximum likelihood estimation can be defined in the same manner as the error back propagation neural network
model. It is shown from experiments that considerably high classification performance for small sample size of
training data can be realized and a structure of the network is casily determined by an incorporated statistical

model.

1. Introduction

Generally, an input for a patiern classification
problem can be considered as a stochastic variable
with a certain distribution. In this case, the pattern
classification problem usually reduces to an
estimation problem of a probability deasity function
(pdf), since the classification can be performed
according to the Bayes decision rule if a posteriori
probability of the input pattem is obtained accurately.

Trivén [1] proposed a neural network based on a
semiparametric estimation of a pdf, which has a
flexible structure to represent any distribution and
includes a set of parameters of the specific
distribution. A mixture model is a key of the
semiparametric method, which approximates an
unknown distribution by a weighted sum of a finite
number of component densities. The Gaussian
mixture model (GMM) using Gaussian component
densities has been often utilized to combine with
neural networks by some researchers (Trivén [1),
Perlovsky and McManus [2] and Lee and Shimoji
{3D, and it was shown that the parameters of the
GMM can be estimated through leaming and the pdf
can be approximated accurately, Most of these
methods, however, only rearranged an iterative
procedure of the maximum likelihood estimation and
a forward computation of the posteriori probability in
a way imitating the neural network.

On the other hand, Jordan and Jacobs {4] proposed
the Hierarchical Mixture-of-Expert (HME) that
incorporated a generalized linear model in the neural
network. The HME consists of two kinds of
subnetworks: expert networks and gating networks.
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For pattern classification problems, outputs of the
gating network and the expert network are
corresponding to the a priori probability and the pdf
of the component of the mixture model. The a priori
probability of each component varies depending on
the input data, so that the HME can address a more
flexible statistical mode! comparing with the mixture
model. By introducing the gating networks, however,
the HME includes a hierarchical internal structure and
much more parameters than the ones of the GMM,
which may lead 1o introduce a complicated leaming
algorithm and loose simplicity that is one of the
attractive features of the neural network model,

The present paper proposes a new type of a
feedforward probabilistic neural network based on the
GMM and the log-linear model for pattern
classification problems. By applying the log-linear
mode! to a product of the mixture coefficient and the
mixture component of the GMM, a semiparametric
model of the pdf can be incorporated into the
feedforward neural network and a simple learning
algorithm based on the back propagation is still
applicable. Also, the network structure such as an
activation function of each unit, a number of layers
and a number of units can be determined by the
corresponding structure of the GMM incorporated in
the network, _

2. Log-linearized Gaussian Mixture
Model

2.1. Gaussian Mixture Model

Here, a pdf flx) of a feature vector x € R*is
represented by 2a GMM with X classes:
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where M, (k= 1, -}, K ) denotes the number of
components of the class k; a, , denotes a mixture
cocfﬁcaentoramkingpmpmﬁonot‘eachcomponent
{k,m); and }
the mean vector and the covariance matrix of each
component {k, m}. Note that |-| represents the
determinant.

Now, let us consider a problem to classify an
observed vector x into one of K classes, The Bayes
decision theory determines a specific class if a
posteriori probability of the vector belonging to the
classxslargerd:anmeonestoanyotherclasses
Using the GMM of the pdf of x, the posteriori
probability P(klx} (k=1,-},K)is given as

e P(k,mw(x!k,m)
FG)

Pk|x)= lZP(k,m[x)s
@
where P(k, m) is the a priori probability of the class
k and the component m, which corresponds to the
mixing coefficient &, ,; and P(x | k, m) is the pdf of
x conditioned by the class & and the component m,
Then, using (1), the posteriori probability P(k, m | x)
can be expressed as
PGk, m) Px |k, m)
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2.2. Log-Linearization

Since g(x ; p*™, *™) is the d-dimensional
Gaussian distribution ngen as (3), using the mean
vector ™ = (& ...}, u%=)" and the inverse of
the covariance matrix Z‘* "’“= [s§-1, the numerator

of the right side of (5) can be represented as
a, 0r ; e, T4
o
= eXp { —%}: ﬁ (2'—83) S(;'n)xﬁ;
&, ) (&.n)
+ 32 ‘2‘ % X
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where §; is the Kronecker delta: §;= 1 when i =j and
8= 0 wheni#j.

Let us consider to linearize the right side of (6).
Taking a logarithm of (6), we can get

atlog a;.e(x;p"*",z“")#“"’x ) )
where X € Rt ¥and f~™ e R"are defined as
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and the dimensionality H is defined as H = 1 + d(d +
3) / 2. We can see that &, ,, can be expressed as a
product of the coefficient vector S*™ and the

modified input vector X € R,

x M )

However, since 2 3 P,m|x) = 1, the
variable &, ., ismdmdant.’!hcn a new variable Y,
and a new coefficient vector w*™ ¢ R¥ are
introdaced:

Ylme 5¢u“fx.u§=(ﬂ“"'-ﬁ“'"‘))rx= W“""’x

an
where w4 = 0, It should be noted that w™™
becomes a weight coefficient with no constraints,
which is a desirable feature for leaming scheme of the
nearal network. Then the posteriori probability P(k,
m | x) of (5) can be computed as

“P Y.

'z‘ .; exp [Y ¥, u’] (12) ‘

As mentioned above, by taking a logarithm of the pdf
of each component, the posteriori probability can be
expressed using the variable Y, . that is a linear sum
of the modified input vector X and the coefficient
vector w"™; that is, the GMM is log-linearized. In
the next section, the log-linearized Gaussian mixture
model (LLGM) derived here is developed in a form of

P, mlx)-*

‘a feedforward neural network.
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3. Neural Network Model
3.1. Network Structure

Figure 1 shows the neural network proposed in
this paper, which is of a feedforward one with four
layers. Firs, the input feature vector x € R*is
preprocessed and converted into the modified input
vector X € ¥ according to (8). The first layer
consists of H unmits corresponding to the
dimensionality of X and the identity function is used
for the activation function of each unit. The
relationship between input and output of each unit in
the first layer is defined as:

(!)I},, xj and a>03,,m;} . (13)

where 7, and ’0; denote the input and output of the
j-th unit in the first layer.

Fig.1 Structurs of « LLGMN

The second layer coasists of the same number of
u?its as the total component number of the GMM

2 M,. Each unit receives the output of the first
layer weighted by a coefficient w* and outputs the
_ posteriori probability of each component according to
(12). The inpat to the unit {k, m} in the second layer,
¥;, .., and the output, 0, , is defined as

H
Yoa= 3 COME" (14)
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where Wi = 0 (h = 1, -}, H). It should be noted
that (15) can be considered as a kind of generalized
sigmoid functions.

Finally, the third layer comsists of X units
corresponding to the number of classes and outputs
the posteriori probability of the class k (k = 1, -},
K). The unit £ integrates the outputs of M, units {k,
m} (m =1, .}, M, ) in the second layer. The
relationship between input and output is defined as

@g, = , as)

My
"’Iga'}; 0,. ad ©0,=, . (k¢

In the log-linearized Gaussian mixture netwos
(LL.GMN) defined above, the posteriori probability ¢
cach class can be calculated based on the log-linearize
Gaussian mixture structure incorporated in th
network by leaming only the weight coefficient wi’
between the first layer and the second layer.

3.2. Learning Rule

Now,letuscmsiduasupewiseGW’ Pwith,
teacher vector T = (T® ...}, T, ), TYY for th

n-th feature vector x*, If a teacher provides a perfec
classification, 7¢" = 1 for the particular class k aw
T = 0 for all other classes. The network is traine:
using a given set including N datax®(n = 1, -}, N)
Using the training data, a log-likelihood function 1
can be derived as _

N X
L=X g.‘,‘ ¢80, , ar,

where the output *’0, of the LLGMN corresponds «
P{k 1x™). As an energy function for the network, we
use

N K

N
J=Z J=- % 3 101870, , (19

and the leaming is performed to minimize it, that is,
maximize the likelibood. For x™, a weight
modification Aw®™ of the corresponding weight
wit™ (h = 1, -], H) is defined as
aJ,
e as

in a sequential learning scheme, where 1 is a positive
Jeaming rate and

ot L
s~k -4 o)

===((1)0 __mog,- T(u))x«)
(X)) u)o* & ko

It can be seen from the leaming rule (20) that the
teacher signal given for classes are distributed into

20)

- each component according to the ratio of the

posteriori probability “’0, ., of each component to
the posteriori probability ®’0, of the class k.

The leaming rule derived in this paper can be
applied using not only the perfect teacher signal of
{0,1} but also a probabilistic or fuzzy teacher signal
which‘takee; a continuous value of {0,1]. It should be

noted!halg:' TP =1 and TT), 2 0 are required. Now,
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when the teacher signal vector 7% and the output
vector ¥'0 = (P0,,-}, @0,. '}, P0,)" of the
LLGMN are given, using the Kullback infonmation
that is often used as a pseudodistance between two
pdfs, an energy function for learning is defined as

)
r-f 00 - § & 1ovon
aw nw - &

N X
TPlog 7~ X 2. T10%0,20 ,
@n
where I, (; ) represents the Kullback information.
The first term of the right side of (21) is a constant,
5o that the second term should be minimized in order
" to come close 0 to T, Since the second term is
equal to the energy function J of (18), the learning
rules (19), (20) derived for the perfect teacher signal
also minimize the Kullback information defined as

@1).
4. Simulation Experiments

N K
=2 ¥

n=l kel

4.?. Generalization Ability

To compare the LLGMN with the error back
propagation neural network (BPN) [5] on
generalization ability, pattern classification
experiments ‘are carried out using two dimensional
data (d = 2, H = 6) for two classes (X = 2) which are
artificially generated using the Gaussian mixture pdf
with two components (M, =M, = 2). Table 1
indicates the parameters used in the GMM.

- The LLGMN includes four units in the second
layer which is corresponding to the total component
number; six in the input layer; and two in the output

- Inyer. On the other hand, the BPN includes two units
with the identity activation functions in the input
layer corresponding to the dimension of x; ten units
with the sigmoid functions in each of two hidden
layers; and two onits with the sigmoid functions in
the output layer. Learning for both the networks is
carried out until the energy function J, of (18) is less
than 0.1 for all training data. The teacher signal is

given for each class (see (19), (20); n = 0.0001) and,
for the BPN, two outputs are normalized to make the
sum of the outputs 1.0,

Figure 2 indicates changes of the classification
rale with the number of the training data. Both
networks are trained using five sets of the training
data independently, the numbers of data of which are
10, 20, 30, 40 and S0. Then, the ratio of the correct
classification to 2000 data that are not used in
Jeamning (1000 for each class) are computed. In Fig.
2, the mean values and the standard deviations of the
classification rate for ten kinds of initial weights
which are randomly chosen are plotted. Although
both networks can achieve high classification rate for
large number of training data, a deference becomes
clear as the number of the training data decreases. The
LLGM keeps the classification rate high even for
small sample size of the training data, whereas the

classification rate of the BPN decreases.
Table 1 Parameters of the Gaussian mixture model used in the
experiments
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Fig.2 Effect of the sumber of training data on classification
bility
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Fig.4 Scatter diagram of training data and decision region boundaries learned in the BPN

Decision region boundaries learned by the
petworks, on which the posteriori probabilities of
both class become equal, are shown in Fig. 3 for the
LLGMN and Fig. 4 for the BPN, In the BPN, the
decision region boundaries are varied largely with the
number of the training data. On the other hand,
similar decision region boundaries can be obtained by
the LLGMN in spite of changes of the number of the
training data.

4.2. Representation Ability

The parameters of the GMM such as the mixing
coefficient ¢, .. the mean vector u* ™’and the
covariance matrix Z** include several constraints.
For example, the covariance matrix must be
invertible and the mixing coefficient &, , must be
positive and the total sum of the mixing coefficients
must be 1.0. On the other band, the weight
coefficients w* used in the LLGMN have no such
counstraints and are mutually independent. To evaluate
this difference, the LLGMN is compared with the
MLANS (Maximum Likelihood Artificial Neural
System) [2] which was developed by a direct use of
the GMM.

Classification capability of two networks are
evaluated in a two dimensional feature space (d=2, H
= 6) for three classes (K = 3), in which classes Aor B
has a rectangular region and class C has two regions,
The class pdf is constant in every region and the a
priori probabilities of three classes are the same,
Also, two regions belonging to class C have the
same a priori probabilities. An example of training
data is shown in Fig. 5 with four rectangular regions.

The LLGMN includes six units in the input layer;
three in the output layer; and the same number of
units as the total number of the components used in
the MLANS in the second layer. The teacher signal is
given for each class ((19), (20); 1 = 0.5) and leaming

is carried out until the mean value of the energy

function J, of (18) for all training data becomes less
than 0.5. Note that for three training sets including

210, 270 and 330 data, dynamics of a terminal
attractor is incorporated in the learning rule in order to
speed it up [6). On the other band, in MLANS,
leamning procedure is continued until a Bhattacharyya
distance of the posteriori probability with an iteration
becomes less than 0.0001. For evaluating the
classification ability, 3000 data (1000 for each class)
are artificially generated, which are different from the
training data.

o N —— s
o 01 02 o.a*o.o s 05 o7
Fig.5 Scatter diagram of 210 training data

Figure 6 shows a classification result when the
number of learning data is varied from 30 to 330,
where the mean values and the standard deviations of
the classification rates for 10 kinds of initial weights
are plotted. A solid line and a dasbed line show the
results of the LLGMN and the ML ANS, respectively.
Note that both the number of components used in the
MLANS and the number of units in the second layer
of the LLGMN are nine, i.e., three for each class.
When the number of the training data is sufficiently
large, the classification rates of both networks are
almost the same. As the number of the training data
decreases, however, the classification rate of the
MLANS becomes worse than the one of the
LLGMN. Note that the covariance matrices included
in the MLANS could not be estimated in the case of
30 training data, because the number of the data
belonging to each component decreases remarkably
when the number of the training data is small.

Next, Fig. 7 shows a classification result when
the total number of components is varied from 3 to
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12, where the same number of components in cach
class is prepared. The number of the training data is
210, i.e., 70 for each class, and the same convergence
conditions as Fig. 6 are used except for the case of the
LLGMN with three components in which the
leaming is carried out until the mean value of the
energy function J becomes less than 0.6. By using
the MLANS (a dotted line), classification is
performed successfully when the number of

components is enough large. For the small number of -

components, however, it becomes difficult to
represent the distribution of data adequately, then the
classification rate decreases. The standard deviation of
the classification rate of the MLANS becomes large
when the number of components is six, since three
different leaming results have been obtained depending
on the initial weights. On the other hand, by the
LLGMN, classification is still successful even if the
number of components is small.
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Fig.6 Effect of the sumber of training data on classification
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Fig.7 Effect of the sumber of componsats on classification sbility
5. Conclusion

The present paper proposed a new neural network
based on the log-linearized Gaussian mixture model,
which can estimate the posteriori probability for
pattern classification problems. Advantages of the
LLGMN proposed bere are summarized as follows: 1)
the statistical structure incorporated in the LLGMN
realizes considerably high classification ability for a
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small sample size of training data; 2) the LLGMN
can achieve more general ability than the one of the
GMM by relieving parameters of the GMM from
their constraints; 3) the network structure such as an
activation function of each unit, number of layers and
number of units can be determined easily
corresponding to the GMM incorporated in the
network; and 4) the output from the LLGMN can be
treated as a probability. '

Future research will be directed to developing
some techniques to regulate a component number,
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Science and Technology Foundation.
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