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Abstract : Impedance control is one of the most effective control methods for the manipulators in contact with
their environments. The characteristic of force and motion control, however, is influenced by a desired impedance of
a manipulator’s end-effector, which must be designed according to a given task and an environment, The present
paper proposes a new method to regulate the impedance of the end-effector through learning of neural networks.

The method can regulate not only stiffness and viscosity but also inertia and virtual trajectory of the end-effector,
and can realize a smooth transition from free to contact movements by regulaung impedance parameters before a

contact.

1 Introduction }

- Impedance control can regulate end-effector
dynamics of the manipulator to the desired one, and
give us a unified approach for force and motion control
(Hogan, 1985). The characteristics of control system,
however, are influenced by desired impedance that must
be planned according to a task and an environment.
Leaming by neural networks is one of possible
approaches to adjust the impedance skillfully.

Recently, a few investigations that apply the
neural network learning into the impedance control have
been reported. Asada(1990) showed that nonlinear
viscosity could be realized by using the neural network
model as a force feedback controller. Cohen and
Flash(1991) also proposed a method to regulate the end-
effector stiffness and viscosity. Although the stiffness
and/or viscosity were learned in their models, an inertia
property couldn't be regulated.

The present paper proposes a new method to
regulate the desired impedance through leaming of
neural networks. Three kinds of the error back
propagation typed networks are prepared corresponding
to the position, velocity and force control. First, the

- networks for position and velocity control are trained
using iterative learning during free movements. Then,
the network for force control is trained for contact

" movements. During contact movements, the virtual

trajectory is also modified to reduce control error.

2Impedance Control
A motion equation of an n-joint manipulator in
contact with an environment is given as

M(B)B+h(6,0+8(8) =T - J (OFm, (1)
where 8 and 7 € R* represent a joint angle and a joint

torque, respectively; M(6)e R™* is an inertia tensor;

" 1(6,6)eR* is centrifugal and Coriolis forces; g(6)e R*

is a gravitational torque; J(6)e R™* is a Jacobean
matrix; F;u€R™ is an external force exerted from the
environment to the end-effector. m is a number of
degrees of freedom of an operational space. In this
paper, a chamctensuc of the environment is modeled as
= MX+BX+K.(X-X), (2
where Xe R" is an end-effector position; X,eR™ is an
equilibrium position of the environment; and M,, B,
and K,e R™™ represent inertia, viscosity and stiffness
of the environment, respectively.
Using a nonlinear compensation such as
7= KO8+ @ (OF e MO O Furi(®], ()
the dynamics of the manipulator in the operational
space reduce to a simplified equation(Luo and Ito,1990):
X=F, act s (4)
where F,€R” is a control force represented in the.
operational space. Also, a second order linear model is
used as a desired end-effector impedance:
MudX+BadX+KaX = Fa- Fins, (5)

~ where dX=X-X,R™ is a displacement vector; X and

F & R™ represent a virtual trajectory and a desired hand
force, respectively; and M, B, and K€ R™* denote
desired inertia, viscosity and stiffness matrices,
respectively. From (4) and (5), the impedance control
law for F,, is derived as follows:
Focr=-Md (B;iX-l—Kng}rM (FtFm)i'Xa )
Fig.1 shows a block diagram of the impedance
control (Luo and 1t0,1990). During free movements,
the force feedback loop doesn’t exist because of
FeFin=0.
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Fig.2 Impedance comrol using neural networks.
3.Iterative Learning of Impedance Parameters
3.1 Impedance control using neural networks

- Fig.2 shows the impedance control system
proposed in this paper, which includes two neural
components. The one is the trajectory control network
(ICN) that corresponds to M";Kd and M"le, and the
other is the force control network (FCN) corresponding
to M ;! (see Fig.1).

3.2 Learning during free movements

Fig.3 represents a structure of the TCN, The
position control network (PCN) and the velocity
control network (VCN) are multi-layered networks with
m input units and m? output units. The input units
represent the end-effector position X, and the output
units represent M "IK" for the PCN and M, "lB“ for the
VCN. The linear activation functions are used for input
units and the sigmoid ones are used for hidden and
output units.

The outputs of the PCN and VCN are denoted as
Op = (0F1,052,--0}w) and O, =(0h.05.--0%) ,

bz‘
gﬁlz
E‘.A
) &

S n . . - - - e g -

Fig.3 Neural networks for trajectory control, TCN.

where o0, and 0,.€ R™ are the vectors that correspond to
the i-th row of M ;'K and M ;'B,, respectively.
Using these notations, the control force F ., during free
movements is given as

oh oh
0|y | ok %

Fact= FptFAXa=- +X4, (D

ol 5
where F,, and F.€ R™ are control vectors computed from

the PCN and VCN, respectively (see Fig.3).
An energy ﬁmcuon for the TCN is defined as

Ey= lz {E+ED)), ®)

where E,(t) (Xa(t)—X(t)) XLH-X) and

Ed) = Ra0-X(0) K40-X@). NptfAr denotes a
number of data, where #is a final time and Az isa
sampling interval. Then, the synaptic weights in the
PCN and VCN, w{ and w{, are modified in the
direction of the gradient descent as follows:

©__n 9E1 ®_ o 0k
AW.I n a gp) » Awq ’Ivaw ™’ (9)

aEl = aE 1 aF P(t) BOP(t) (10)
wdP  3F,() 30, aw®
oE1 _ 8E1 oF/) 90/ an

awi" AFLr) 304 awd
where 17, and n.areleammgratw Except for the terms
oE/0F ,(1) and 0E{/oF (1), all other terms can be
computed by the error back propagation. Since
OE1/oF ,(t) and 0E/0F (t) cannot be obtained directly
because of the manipulator dynamics, a betterment
process (Kawamura, Miyazaki and Arimoto, 1986) is
used to approximate them.,

' In the betterment process, a time series of input
signal is iteratively modified using an exror signal, so
that an output signal at the next iteration approaches.to
the desired one. Using a DP typed betterment process,
a control force at the (k+1)-th iteration is defined as

FE O =F'0)+ FP' 0 + Xk, (12)
F?‘(:)-—-F:(t)-r,a‘(z). (13)
.k

VO=FO-NLdX (), (14)
where I, and I,e R™ represent gain matrices. Note
that convergency of the betterment process is assured
under appropriate gain matrices(Kawamura, Mxyazak;
and Arimoto, 1986). From (13) and (14), it can be seen

that the second terms give the directions of the control
forces in order to decrease the error function E, at time

t. Therefore, the second terms are used as the partial
derivatives, dE,/dF (1) and 0E/oF (1):

oF; OE _Ir d OE, r TN
o= [l an 25 «[rax o) .

13
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Fig.4 Neural network for force control, FCN.
3.3 Learning daring contact movements
Next, the FCN is trained during contact
- movements. Fig.4 shows a structure of the FCN. The
input units represent the end-effector position X(f) and
force control errors dF () = F (1) - F;,(¢) and dF(s-1).
Also, the output units represent M ;1.

The output of the FCN is denoted as
Or=(of .08, -0f)" , where ozeR™ is the vector that
‘corresponds to the i-th row of the matrix M1, From
(6)and(7),ﬁlewntrol force F,,, is given as
' oh oR

oy |0k

Ofm
Also anenergymncnonmdeﬁnedas ‘

Ez=l§ Exfn)= l); {l)_; h’(o[E,(r+o+E,<r+o]} an

where E(t+i)=dF (t+i)TdF (t+i) and E(f)=E£1)=0 for >N,
and #<0. ~h(z‘) is a data window function. The error
function Ex(r) is a weighting sum of position and force
errors from ¢-N to t++N. Therefore it includes the
control errors within N unit time in the fature. Since
the present paper uses the iterative leaming scheme, the
control errors after time ¢ in k-th iteration can be used
for the (k+1)-th iteration.
The direction of the gradient descent of the
synapnc wexghts wé? is given as
aE3 OF ac(t+i) A0Lt+i)
- W3,
: »—N aF ac(t+i) 80,(t+i) aw9

where E3 =%§ [Eft+i}+Efr+)] and 7, is learning

rates. Except for 0E4/oF . {(t+i), all terms in (18) can
be computed using the error back propagzmon For
8E4/OF . (t+i), the betterment process is used i in the

same way as the TCN.
Here, it is assumed that the total data length Nis

sufficiently longer than the data window N. Asa
result, the error function E; can be approximated as

Ny Ny
%; [Ep(e+iy+Efe+i)] = %”ZO [Ehe+ir+Efr+D)] . (19)

The direction of the gradient descent of the right hand
side of (19) is approximated by the betterment process,
and it can be defined as

+X4. (16)

»(18)

2 .c,(: -{r.dx (esd- (e it "1 20)

where I, I'and P R™* represent gain matrices. ;
During learning of the contact movement, the
virtual trajectory is also modified. The learning rule
can be derived in the same way as the FCN except for
the energy function. Because the modification of the
virtual trajectory makes the position error E (r+i)
insignificant, the energy function is modified as

g {l; h’(azxxm} @D

4 Simulation Experiments ’
Computer simulations of planar movements
(m=2) are performed under an assumption that the end--
effector dynamics have already simplified as (3). .
First, a free movement is simulated. The PCN
and VCN are of three layered networks with two input,
ten hidden and four output units. The learning rates are
7,=2.0x10* and 7,=5.0x10°5. I, and T, are determined

a_s L= ldmg.[mm (opu(®)min (022())]  and

L= 1dlag{mm (om(t)),mm (o2(®)], respecnvely

(Kawamura, Miyazaki and Arimoto, 1986).

Fig.5 shows changes of the end-effector
trajectory by learning. The number in the figure
denotes the iteration of the betterment process. Each
iteration includes 100 times of neural network learning.
The desired trajectory of the end-effector is determined
using the fifth-order polynomial, where #=1.0[sec],
Ai=0.001 [sec] and N=1000. The end-effector trajectory
coincides with the desired one within several iterations.

Table 1 shows impedance parameters, MK

Fig.5 End-effector trajectories during learning of a free

movement.
Table 1 Impedance parameters before and after leaming
for a free movement.
E[M;'Ki] E[M;B]

before leaming | 1153855 1.14292 124700 1.62821

‘ 1.00605 1.08828 140561 1.25643
after leaming  11495.19279  0.448717 | [497.59935 041674
{10 trials) 044652 475.05515 ) | | 056942 49430498
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and M; B, before and after learning. E[M/ 'K ] and
E[M;'B,] represent time averages of the corresponding
impedance parameters. The diagonal clements of the
impedance matrices increase after ten iterations.

Next, learning of a contact movement is
performed for the same environment as Fig.5 except for
an object placed along the x axis. The dynamics of the
object are characterized as (2) where M =diag.[0, O}[kg],
B ,=diag.[0,10]{N-sec/m] and K,=diag.[0,1.0x10°}[N/m].

The FCN is a three layered network with six
input, ten hidden and four output units, The ters
are the same as TCN learning except for 7=6.43x10-1!
and 7,=6.0x10', Also, I'; and &y are determined as

1= Laiag[min (on1(0).min (o] and & = -—L-f}

Fig.6 shows changes of the end-effector forces by
learning, where the Hanning window is used for A(7)
with N=100(see (18)) and the desired end-effector force
is set to F4=(0, -100)T[N]. Before learning, large
interaction force is exerted along the y axis (see the
iteration number 0 in the figure). After thirty
iterations, however, the end-effector force coincides with
the desired one.

Fig.7 shows the effect of the window length N

Fig.6 End-effector forces in the normal direction of the
object during learning of a contact movement(N=100).

Fig.7 Learning results of virtual trajectories for
contact movements(N=0, 100, 200).

to the learned virtual trajectories(after thirty iterations).
In all cases, the end-effector forces coincide with the
desired one. For N=0, the virtual trajectory suddenly
changes just after the contact in order to absorb the
impact force. As the window length increases, the
virtual trajectories change before the contact so that a
smooth transition from free to contact movements can
be realized.

Table 2 shows impedance parameters before and
after learning for the contact movement, After thirty
iterations, the impedance parameters become
considerably small in the normal direction of the
contact surface. The impedance can be regulated
according to the-task by the iterative leamning.

5 Concluding Remarks

The present paper proposed a new method to
regulate the end-effector's impedance using neural
networks. The method can regulate the second order
impedance through iterative learning. Introducing the
window function into the error functions, the virtual
trajectory as well as the impedance parameters can be
modified before contact.

The further research will be directed to
improvements of leaming speed and a generalizing
ability of the proposed method for various classes of the
constrained tasks. Finally, we are grateful to Mr.
M.Nishida for the developme'nt of computer programs.
The work was supported in part by Nissan Scnence
Foundation to T.Tsuji.
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