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A Dynamical Model for the Generation of Curved
Trajectories

P. Morassot, V. Sa.nguineti{', and T. Tsujit
t Department of Informatics, Systems, and Telecommunications, Genoa University, Italy

{ Fuacully of Engineering, Hiroshima University, Japan

Abstract - In the framework of a central hypothesis of kinematic invariance, we propose a model (¢-
sodel) which is a non-linear dynamical system capable of generating, as motor primitives, s family of curved
trajectories. The model links shape and speed by means of a suitable time base generator that drives two
equations: 3 linear-speed equation and a turning-speed equation.

1. Introduction

The kinematics of haman movements has remarkably invariant features in a wide range of timing,
foading, and "postural” conditions. The question, then, is what we can infer about the underlying
neural processes. The first dichotomy is between models (like the A-model [3]) that privilege the
properties of the musculo-skeletal apparatus and models that attribute the main morphogenetic
role to more central planning processes. Although we think that the viscous-elastic properties of

muscles are essential for skilled movements, particularly as regards fine compliance control, the
peripheral hypothesis of kinematic invatiances is not powerful enough, in our opinion, to capture
the complexity of the topic and, in any case, it leaves open the question of where and how complex
muscle patterns are generated.

For a central Aypothesis of kinematic invariance, on the other hand, there is the opposite danger
of reducing it to an abstract curve fitting exercise, quite uncoupled from the musculo-skeletal reality.
From this point of view, we think that the central generator of kinematic patterns should be viewed
as a dynamical system and not as some kind of static mechanism, like in the minimum-jerk model
{4] or the power-law model [6]. Moreover, there is a compasitionality problem: since complex
trajectories are cbviously composed as ordered sequences of discrete motor commands, which are
the basic primitives? Global models, like the power law model, are good (perhaps, too good) for
complex, endless trajectories but are not plausible for simple reaching movements, whereas local
models, like the minimum-jerk model, (over-)privilege straight trajectories.

The model that we propose (£-model) is somehow in the middle: it is a non-linear dynamical
system that, in the framework of a central hypothesis of kinematic invariance, is capable of gen-
erating, as motor primitives, a family of curved trajectories that include straight lines as special
cases. The dynamics of the model quite constraints the range of possible dynamic behaviours:
differently from the VITE model [2], that can generate any kind of speed profile by an appropriate
choice of the 4(t} function (2(t) = 7(t)(z; — z)), the £-model is intrinsically based on 2 xymmetnc
mechanism and it only has 3 free parameters of immediate cogmtxve significance.

2. The mathematical model

The shape of a trajectory depends on the way in which curvature varies with the curvilinear
coordinate. The model links shape and speed by means of a suitable time base generator that
drives two equations: a linear-speed eqna.taon and a turning-speed equation.
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Figure 1: System dynamii:s corresponding to different values of e

2.1. The time base generator

The time base generator is a scalar dynamical system £ = f(¢) in the normalized variable £ which
is supposed to generate smooth sigmoidal signals £ = £(t) from £(0) == 0 to £(Ty) = 1 with a
bell-shaped velocity profile and a desired (finite) movement duration T 1.

A class of models f(£) that satisfy these conditions is given by f(£) = v {£(1 — £)]° withe € (0,1)
2, Figure 1 plots the phase space diagram and the velocity profile corresponding to different values
of e. As regards the exponent ¢, it can be shown that the condition ¢ > 2/3 is necessary for the 3¢
time derivative of £(t) (ferk) to be defined at t = 0 and ¢ = Ty. In these conditions, the equilibrium
configurations of the dynamical system do not satisfy the Lipschitz condition because |df /d£| — oo:
£ = 1 behaves as a terminal attractor and £ = 0, which is unstable, is a terminal repeller {1]. In
summary, the time base generator used in the simulation is described by the equation:

£=ylE(1- PP (1)

Remarkably, this model can be approximated with a simple neural network, presented in Figure 2,
which consists of 4 neurons: N1,N2, N3,N4. N1 and N2 are additive neurons, N3 and N4 are
multiplicative neurons. All of them have a sigmoidal activation function with high gain (y = g(z) =
(1 — e~*=)/(1 4 =), with k >> 1). N3 has a sufficiently long time constant for approximating
it with an integrator, while the others have sufficiently short time constants to consider only the
steady-state components. The network is a dynamical system in the £ state variable and it is easy -
to derive the following state equation: £(t) = vg{g(£)g(1 ~ €)). Since the sigmoidal function is
monotonic, the state function g(g(£)g(1 — £)) can be approximated by a function f{£(1 - £)) that,
similarly to a power function with an exponent smaller than unity, is very steep in the origin and
thus gnarantees a finite 7y, The 7 parameter has a double function: it controls the speed and it
can be used to reset the time base generator and make it excitable for subsequent activation cycles.

2.2. Generation of curved trajectories

The linear speed v and the turning speed w can be linked to a common goal (reaching a target with
a desired orientation) by using the same time base generator and a pair of error measures: the linear
error Ar and the angular error A8. The former one is simply the norm of the difference between
the final and the current position: {jzy — z(t)}]. With this notation, it is possible to demonstrate
that the following linear speed equation

v=Arf/(1-¢§) (2)

1€ should tend to zero for £~ 0 and t — Ty. Ty is given by [} d¢/f(£) and a sufficient condition for attaining a
finite value is that f(£) is infiniteximal of order n, n < 1, for both § — 0 and £ — 1.

3For this class of functions, it can be shown that movement daration T is inversely proportional to the gain factor
¥ Ae) = }TyT*{1 - &}/T{2 ~ 2¢)
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Figure 3: Circular trajectory (left) and simulated trajectories (right)

allows z(?) to reach 2 at the same time in which £(¢) reaches 1, provided that the turning speed
equation allows Ar to decrease in a monotonic way. In the limit case of a straight trajectory, this
is equivalent to a simple interpolation with no rotation: z(¢) = zo + (zs - z0)é(2) *. For general
movements, in which the initial and/or the final directions are not aligned with z; — zq vector,
a sufficient condition for the trajectory to hit the target with the right direction is that at some
point in the trajectory (i.e. for £ < 1}, the running point z = z(t) reaches the configuration which

- characterizes a circular motion: #(t) = ~8; (see Fig. 3, left). In this case, the following relation
between w and v holde: w = v/R (R is the radins of the circle) and since Ar = 2Rsin 8, we get
w = 2sin0£/(1 ~ £). In general, we can write a turning speed equation

w = ABE/(1-§) @

where the angular error term is given by A8(t) = 2sin6(t) in the limit case of & circular motion. If
the current conditions do not support a circular motion, then a possible strategy is to smoothly drive
8(1) towards such symmetric condition. The two criteria (approaching the condition of symmetry
and following a circular path) can be combined in the following hierarchical way (Abym = —(8 +
0r)):

A8 = Al + 2sin fe-dbum?/2? ' )

It can be seen that while the error term for symmetry is large, the equation reduces to A8 = Af, .
This equation works just like a feedback control law to attain a symmetric configuration where the
target and present directions of the trajectory are symmetric with respect to the line between
the initial and target points. Once the symmetric configuration is attained, the symmetry error
vanishes and the motion equation of the angular velocity w reduces to A# = 2sin 8. Consequently,

1t is interesting to note that, in this form, if we put ¥{t) = £/{1 ;t). the {-mode is a special case of VITE.
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Figure 4: Simulated translational velocity (left) and angular velocity {right}

once the symmetsic configuration is attained, the £-model can generate the circular trajectory.
The trajectory terminates at the target point where the translational velocity becomes zero. This
guarantees the convergency of the £-model for curved movements. The value of o determines the
relative weights of the two components of the error function. To verify the convergency of the
£-model, computer simulations have been performed. Fig. 3, right shows examples of the generated
trajectories by the {-model where the 2/3 power Jaw is used. The initial and tazget points are
fixed, while several initial and target directions satisfying the symmetric configuration condition
are used. The corresponding translational and angular velocities of the generated trajectories are
indicated in Fig. 4. The spatial profiles of the generated trajectories are almost circular and the
velocity profiles are almost bell-shaped. The £-model can generate the curved trajectory as well as
the straight trajectory as a single stroke movement.

8. Conclusions

In conclusion, the -model consists of three equations: the time base generafor (1} and the two
speed aquations (2,3). It can generate a large class of curved movements, parametrized by Ary,
8y and #;. In a preliminary experiments, in which we recorded hand movements with a digitizing
tablet, we estimated the range of values of the angular differences that produce trajectories with
unimodal speed profiles. We are also in the course of integrating the {-model, which dictates the
behaviour of the end effector, with a self-organized neural model {5] of a kinematic chain which is
actually carrying out the multi-joint coordination task.
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