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ABSTRACT : We developed an EMG controlledarosthetic
forearm with three degrees of freedom actuated by
small size ultrasonic motors. Its welght {s less than
700 g and the size Is the same as the adult's forearm.
The Interface between the smputee and the prosthetic
forearm was designed on the basis of the fact that
the amputee still preserves the phantom limb motor
map after amputation.

The present paper proposes a method to estimate
the motion intended by an amputee from the EMG
signals using neural network. The method presented
here can discriminate the amputee's intended motion
among six kinds of limb-functions from the multl-
channel EMG signals preprocessed by the bandpass
and smoothing fiiters. The cross-information among
the EMG signals can be utilized to make the
electrode lacations flexible, and the band-pass
filters can provide the amplitude and frequency
characteristics of the EMG signals. The experiments
of three subjects and four electrode locatlons
demonstrates that the method can discriminate six
notlons of forearm and hand from unlearned EMG
slgnals with the accuracy above 90 %X.

I. INTRODUCTION

Since the 1950's, many research and development
efforts on EMG contolled artificial arms have been
done. The representative prosthetic arms are Russian
hand, Boston arm, Otto Bock, Utah arm, and WIME
hand. Within these artificial arms, EMG controlled
‘electric hands are actually fitted. One of the
reasons for the success of the electric hands lles
with the controllablllity. However, it never satisfles
the amputee when compared with the natural hand.
Because the conventional hands are limited to only
one or two degrees of freedom. And they make
acoustically nolses due to the high speed of motor
- revolutions.

we developed an EMG controlled forearm with
three degrees of freedom using small size ultrasonic
motors. The ultrasonlc motors were used to realize
all six motlons in the forearm. If the eléctric DC
motors are used,
motions. Also, the arm Is acoustically quiet, because
the speed of motor revolution {s very lower
comparing with the DC motor.

The present paper discusses a method to estlmate
the motion Intended by an amputee from the EMG
signals wusing neural network. Though several
methods have already been reported on the motlon
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it Is Impossible to realize six

discrimination using the EMG signal, almost of them
relate the EMG data to stochastic sequences by
linear difference equations(e.g. AR model)¥ ™™,
However, different muscles work and signal sources
and paths to the recording electrode -change
depending on the kind of motion. Therefore, the
properties of the surface EMG vary nonlinearly with
changing limb function. In addition, since the model
parameters are fixed, {t Is {mpossible to be adapted’
to gradual changes of EMG propertles resulting from
muscle fatigue, sweating and the change of electrode
characteristics.

In thils paper, we propose & method which can
discriminate the amputee's Intended motlon among slx
kinds of limb-functions using the multichannel EMG
signals preprocessed by the band-pass and smoothing
filters. The cross-information among the EMG signals
can be utilized to make the electrode locations
flexible, and the band-pass filters can provide the
amplitude and frequency characteristles of the EMG
signals. It Is shown that after several tens of
training iterations, 90 X correct classification level
is achleved. Then the method proposed is applied to
control of a prosthetic forearm with three degrees
of freedom.

Il . PROSTHETIC FOREARM USING U'LTRASONIC MOTOR

The prosthetic forearm which was developed on an
experimental basis ls shown in Flg.1. It Is driven by
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Fig.1. Prosthetic forearm with three degrees of
freedom,
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Table 1 Specifications of the prosthetic forearm with three degrees of freedom

Motions Movable range (the time required)| Holding force Gear ratio
Fi Pronati pinath 162 {0.6~30s) 1. 71 kg-cm 4.5
Wrist Flection extention 135" (1.1~ ) 10. 40 kg-cm 1.5
Hand Grasping opening 125 mm (1.1~50s) 4.16kg 29.8

ultrasonic motors installed in the forearm, wrist and
hand, and has three degrees of freedom, l.e., six
motions of wrist flection and extension, forearm
pronation and supination, and hand grasping and
opening. Table 1 shows the specifications of the
powered prosthetic forearm. The total length Is 245
mm, the welght is 690 g and the grasping force Is 4.16
Kg. The gear ratlo is much less as compared with DC
motor actuator.

m. AMPUTEE-PROSTHESIS INTERFACE

The block diagram of the amputee- prosthesis
interface for controlling the forearm is shown In
Fig.2. The surface EMG is measured from a part of the
muscles which have actuated the original limb, and
the motion Intended by the amputee, such as
flection, extension, pronatlon, supination. grasping
and hand-opening, Is estimated. In parallel, the
muscle force Is estimated from the EMG signals. Then
the signal to drive and control the prosthesis Is

Amputee - EMG
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Limb-function - Muscle force
discrimination  estimation
1 I 3
Controller

i

Prosthetic forearm
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Fig.2 Amputee-prosthesis interface.

produced from both. In the following, the
discrimination and force identification procedures
are described. i

V. LIMB-FUNCTION DISCRIMINATION BY NEURAL NETWORK

The flow chart of the limb-function discrimination

procedure proposed here is shown in Fig.3, which is.

composed of band-pass fllters, rectification,

smoothing filters and neural network,

A. Band-pass fiiter

The raw EMG signals measured at the surface of
the amputee’'s skin are passed through the band-pass
FIR fllters. Then each of the L channels EMG signals
{s divided Into N band frequency components as
follows.

k .
y 13{t) = T h 3(k) x 1(t-K) (1)
k=0

where x i(t) is the raw EMG signal (1=1.2,..L : L is
number of electrodes), h s(k) Is the lmpulse response
of the j th band-pass filter (J=1.2,....N) and y ss(t)
is the output of the j th band-pass filter with the.
EMG x u(t).

B. Rectification and Smoothing

The Nx L EMG signals obtained from the band-pass
filters are rectified and passed through individual
one-pole Butterworth fllters each with a low pass
cutoff frequency of 1 Hz. The time-averages Zis of

the resulting EMG signals Yus{t) (§=1,2,....L
3§=1,2,...,N) are computed by
T
213 = T Yaus(t)/T. (2)
t=1

Further Zss Is normalized by

L
Sis =245, T 2is. (3)
i=1

L .
where I Sis=1.
i=1
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Fig.3 A limb-function discrimination method using
neural network. ' ’
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C. Neural Network Subsystem

‘ A feedforward type neural network Is used to
classify the rectified snd smoothed EMG signals®.
The neural network consists of an input layer of Lx
N units, & hidden layer of ten units, and a output
layer of M units. Each. unit of the output layer
represents one of M kinds of motions.

The Input u! and output ol of the unit 1 are
defined as follows.

1s (input layer units)
ul = {4)
I Wi o3

(hidden and cutput layer units)

« 03 = falus) {5)
where the input I: to the input layer units {s Si; of
Eq.{3}). The input to each unit of the hidden and
output layers Is a summation of all the Individual
weighted outputs passed from the previous layer.
The output of each unit is then a function of the
summation of these inputs. The output function has
the following form,

Ui {Input layer units)
fa{ua) = (6)
1/(1 + e7%¥)

- {hidden and output layer units)
D. Network Pretralining

After attaching the prosthetic forearm, the
amputee is asked to perform each of M kinds of
motions by n times. Then Mx n EMG data are acquired.
The neural network s trained by error back
propagation algorithm using these Mx n data. Then
for motion 1, the network weights are updated such
that unit | of the output layer gives 1.1 and all
units except unit | give -0.1. Why'l.1 and -0.1 are
used as the desired outputs is to prompt the
convergence of the network learning. The learning
process is finished when the value of the
corresponding unit of the output layer became more
than 0.8 and the values of units other than it became
less than 0.2 for each motlon. Further the initial
values of the network weights are uniform random
numbers such that | Wiz | < 1.0, .

E. Function Discrimination

It is assumed that the amputee Intends to make
one of M motlions. Then the EMG signals are measured
and Inputted into the system.

Since each unit of the output layer has the
sigmoidal function, the output value Is within 0 and
1. When one of the units of the output layer is more
than 0.5 and all the others are less than 0.3, It is
concluded that.the motion assigned to the unit with
the value more than 0.5 is intended by the amputee.
Unless these conditions are satisfled, the
discrimination is left undetermined. This Is to
exclude uncertain discriminations and " to evade

wrong motions of the prosthetlc arm. In addition,
this makes possible to deal with the case when the

amputee has intended to perform some motion except
M kinds of motions

F. On Line Training

When the prosthetic arm Is in dally use, It Is
necessary to consider the varlations of EMG
propertles resulting from muscle fatigue, sweating
and the  change of electrode characteristics.
Therefore, in order to use the prosthetic arm
successively all day, it I8 required to find the
discrimination method adaptable to these variations.

Ncw, let's consider to update the network welghts
even In use of the prosthetic arm. When using the
prosthetic arm, however, we can not ascertain
whether the estimated motlon colncided with the
amputee's intended one, i.e. wé can not directly find
the desired output (teacher's signal). Therefore, we
propose a methed which updates the welghts based on
the discrimination results with high output values as
follows.

1) Find a set of the EMG pattern and the output
motion which gave the output value more than 0.8
during use of the prosthetic arm, and add it to the

. teacher's signals. Then delete the oldest one of the

stored teacher's signals (Mx n patterns).

2} Update the network weights using new teacher's

slgnals.

3} In the case where the .learning is not finished
within five times, the welghts are not updated to
avold the wrong learning.

V. PROSTHETIC FOREARM CONTROL
A. Basic Experiments

A baslic experiment was performed to Investigate
the discrimination abllity and the convergence of
learning. The experimental conditions are as
follows,

1) Motions :
pronation and supination,
opening. )
2) Subijects : Two adults{male, normal} and one adult
{amputated at the forearm, § cm from the left wrist
joint). The amputee and the normal A are
right-handed, and the normal B Is left-handed,

3) Sites of electrodes : Four pairs of surface
electrodes(L=4) were attached on the forearm, 7 cm
from the elbow joint. The electrode is dry-type made

wrist flectlon and extension, forearm
and hand grasping and

‘by imasen Technical Lab. Three kinds of electrode

arrangements are shown In Table 2. EMG signal in
each channel was A/D converted with the sampling
frequency of | KHz and were stored in the computer
as the data flle,

4) Training data : The amputee was asked to perform
each of M kinds of motions by one time. Then the EMG
signals for 2 sec after a transient perlod were
measured. The band-pass fliters were composed of
three kinds(N=3) of central frequencles, 70 Hz, 160
Hz and 380 Hz with 40 Hz band width each. The order
of FIR filter was K=10 and the impulse response h;(k}
was computed by Remez's algorithm. Each of the
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stored EMG data was divided Into 10 data sets.of 200
msec Intervals. Based on ten data sets, Sis {i=l....4
; §=1,2,3) In (3) was computed (T=100 msec : n=10).
These 6 x 10 data were used to traln the neural
networks. In addition, each of M kinds of motions
were performed by 100 times separately from these
data and the EMG signals were used to confirm the
function discrimination after learning.

Table 2 represents number of learning Iterations,
success rates and undetermined rates in different
experiment conditions, where the success rate is the
ratio of the correct discriminations in discriminated
trials and the undetermined rate Is the ratlo of the
undetermined trials in all trials. They are averages
over  ten kinds of Initial values of the network
welghts. Note that the success rates are more than
80% _Independently of subjects and electrode
locations, and especlally the numbers of Iterations
training the neural networks are less than 30.
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Fig.4 Discrimination results of a series of
motion{amputee).

When the amputee performed M kinds of motions in

consecutive order, the Intended motlons were
estimated at 100 msec intervals and are shown In
Fig.4. The above Is four channels EMG patterns and
the lower is the discriminated results(black dots).
The horizontal lines denote wrist flectlon, wrist
extension, forearm pronation, forearm supination,
hand grasping. hand opening, rest and no action in a
descending order. When the amplitudes of EMG signals
are less than the threshold level, It was concluded
that the amputee was at rest. Though the EMG
signals during stationary perlods give correct
results, quite a number of wrong discriminations
occurs particularly at the time of a change of
motions. This is due to sharp fluctuations of the EMG
patterns.

B. Prosthetic Forearm Contrél Experiment

- A prosthetic forearm was controlled using the
limb-function discrimination method In order to
confirm the adaptation ability to the varlation of

Table 2 Electrode locations and motion
discrimination rates.

Ezxperinest ¥o. 1 LLT Xo. 3 ¥o. 4 ¥o. 3
Subject Normal A} Norsal A Norsal B[ Norazl B | Anputes
Electrode @ ) )
locstions '

Huxber of .

fterations 0.1 1.3 .8 .0 168

Success

rates (X} 100.0 100.¢ 2.1

Undetarained
tates (X LR 5.1 | I

tversge values for 10 Xinds of inltisl vatuex of the syazptic wveights

the EMG patterns. The prosthetic forearm ls driven
by ultrasonic motors Installed in the forearm, wrist
and hand, and has three degrees of freedom, {.e., six
motions of wrist flectlon, wrist extension, forearm
pronation, forearm supination, hand grasping and
hand opening. EMG data processing was done by using
two CPU{Transputer, T800, 25MHz) In parallel. The
time for tralning the neural networks was taken 783
msec/iteration, the time for the discrimination 2.4
msec, the time for A/D conversion, rectification,
smoothing and D/A conversion 1 msec. The subject is

"normal and four palrs of surface electrodes were

attached with 90-deg difference on the forearm. At
first, the neural network was tralned by off-line
learning. Then the subject was asked to continue to
perform six kinds of motions in no particular order
for sbout one hour. During the whole time the
prosthetic arm was operated, on-line training for
‘the neural network had been performed. Then the
subject was Informed the discrimination result first
half an hour, but was not Informed it latter haif an
hour.

The time histories of limb function discrimination
rates are shown in Fig.5. The solid line denotes the
proposed method and the dashed line denotes the
discriminant function method which does not have
learning ability”’. Both have maintained high success
-rates durlng the results are presented to the
subject, But after stopping presenting the results,
the discriminant function method Indlcates a marked
decline in the success rate.

Fig.6{a) and (b) show the distributions of Sii

C(I=l,...4 ; J=1) of 10 times at pre-training and after

an hour from the beginning of prosthetic arm
control respectively. It Is known that there are
marked differences between both In terms of wrist
supination, hand grasping and hand opening. Since
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the proposed method Is possible to be adapted to the
variations of the subject's EMG pattens through
learning, high success rates are maintalined. This is
very important in dally use of the prosthetic arm.

Photo.l shows s example of hand grasping and
opening by the amputee.

VI. CONCLUSION

This paper proposed the limb-function
discrimination method using multichannel EMG signals
by neural networks. Tralning of the neural network
was able to be finished within several tens of
{terations. Then the network after learning could
fdentify distinct types of EMG signals that were
generated by six separate arm functions. The success
rate was more than 90% independently of the
subjects and the electrode locations. Further
re-training the neural npetwork In use of the
prosthetic arm made possible to correspond to the
gradual changes of the EMG patterns resulting from
muscle fatigue, sweating ete.
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