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Abstract

‘We propose a new conventional method to reconstruct mo-
tion from a sequence of monocular images by using a prior
geometrical relation between a pair of straight line segments.
In general, the problem in motion estimation from monoccular
viewed images is ill-posed, therefore additional information is
required to recover depth. In this paper we utilize line corre-
spondence between sequential images and a given information
on the geometrical relationship between two line segments in
the scene. The relation between the coordinates of points can
be described only by a rotation term, if it is formulated by
relative representation. Then if there exists a pair of line seg-
ments, whose relation is given, the matrix can be solved by
using linear equations. After that the translation vector is
computed. Finally some experimental results for simulated
data sets are given.

1 Introduction

The reconstruction of 3D motion or structure from a monocular
image is ill-posed problem, because the information on depth would
be reduced through the projection oato the image. It follows that
it is necessary for the reconstruction to introduce some constraints
about characteristics of motion or the structure of the objects. In the
problem of Motion from Image Sequence, there often assumed that
the motien is sufficiently smooth {1}, [2], {3].

Uliman studied motion estimation based on points correspondence
between sequential images by using the assumption of rigidity of the
objects. He showed it is possible to obtain motion and structure of
an object from points correspondence of 4 points on 3 frames of the
sequential images under the parallel projection, and 5 points on 3
frames under the perspective projection [4]. Tsai and Huang derived

-linear equations by using decomposition of the singular point of the
matrix which contains medial parameters obtained from motion in-
formation [5]. The equation consists of 8 variables and is linear, and
it enables us to obtain solutions from 8 points correspondence on 2
frames under the perspective projection. They realized to get linear
solution, while it had been analysed using nonlinear equations. It is,
however impossible to solve the linear equations, if all the 8 points
lie on 2 planes where one of two planes intersects the origin of 3D
coordinates (at least 5 of 8 points satisfy the condition), or on the
surface of the cone which intersects the origin (at least 6 of 8 points
satisfy the condition).

On the other hand we proposed a method combining optical flow
and correspondence of line segments, in which we derived linear equa-
tions by using an assumption of existence of two pair of parallel line
segments [6], [7]. However it was limited to motion with small dis-

placement between points on two different frames, because the veloc-
ity components were approximated using differential equations. And
then we proposed a linear algorithm to estimate motion of a rigid
object utilizing the relative expression of coordinates by assuming
the existence of a pair of paralle] line segments [8]. The method did
not adopt any approximation so that it yielded error-free results for
all types of motion. It is also possible to examine if a chosen pair of
line segments is parallel or not, estimating the motion parameters.
The method can be applied to a number of industrial applications,
because it needs only a pair of parallel line segments, i.e. 4 points
correspondence on 2 frames. However the method requires existence
of a pair of parallel line segments.

In this paper, we give an extension of the above method to admit
other geometrical relation than parallelism. This method can use

theoretically almost the all relations between two line segments. It
is, however, necessary to give it in advance of motion estimation.

2 Motion Formulation

In this paper we focus on the motion reconstruction from two
sequentialized images onto which one rigid object in the scene is pro-
jected by the perspective projection. In this section we formulate the
motion of one end-point of a line Segment and the relative motion of
another end-point. Motion of a line segment on the image is shown in
Fig.1. We define (z,y) as one end-point of a line segment and (r, s)
as the relative position of another one, and the positions after motion
are defined as (z/,y') and (r', &) respectively as well as ones before
motion.

2.1 Motion of Terminal Points

‘We show the geometrical relationship between the motion of point
P in the scene and the image plane in Fig.2. The origin of the world
coordinate system OXY Z is set at the lens center of camera, and
the Z axis of the coordinate system is placed along the optical axis.
Then the 3D motion of point P can be generally represented by the
rotational component & and the translational component I" as fol-
lows,

X’ X
Yi=¢|YI+T {1
z ¥4
where ¢ and I'" are represented as follows,
b1 2 1] ax
= 1ds ¢s ¢s|, =AY |, @
$r ¢s o] AZ
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where the rotation matrix & can be described as follows,

a? 4+ (1 - o?)cost o102(1 — cosf) — o3siné  o103(1 ~ cosP) + oosind
& = | 6y02(1 —~ cos8) + o3sind o3 + (1 - o3)cost o203(1 ~ cosf) — oysind
a103(1 — cosd) ~ oz5ind  o203(1 — cosf) + oysind 03 + (1~ of)cosh
3

where § and (01,02,03 ) denote the rotation angle and the ro-
tation axis respectively. Then the unit cosine vector can be written
as

e+ ot +a3t =1 4)

The relation between ¢; {# = 1to 9) and their parameters 8, oy, 072, 03
yields a nonlinear function. It is, however, possible to solve a pair of
solution sets of 8,01,02,03 {5]. The two solutions are dual and the
difference of them is based on whether the parameters are described
in ¢w or ccw. Hence as the difference can not be discriminated phys-
ically, they can be assumed as the same. Here the relations between Line $
two points in the 3D world P(X,Y,2) and P'/(X",Y",Z’), and their e Segment Y
projection onto image plane p{z,y) and p'(z’, y’) are given as follows, B —

X Yy , X Y’

Fig.1 Relative expression of motion on an image.

z=S,y=5 =50 =5 8
Image Plane
2.2 Relative Expression of Motion T
Here we introduce a new Cartesian coordinate system OXYZ
whose origin O is set at the end-point of line segment P as shown in P
Fig.3. Then another end-point can be represented as M{m,, m2, m3)
in this coordinate system. The corresponding point after motion can X
be represented as M'(m;’, my’, m3'), where M and M’ are the vectors
along the line-segments. The relations between the vectors M, M’
and their projection onto the image plane (r,s), (r, s’) are given as
follows,
pm MaTMeT My —mgy ©)
Z+my '’ Z4m, "’ Fig.2 Geometry of the perspective projection.
. m;—m;z' ' m;—m;y’
r Z'-{-m; y 8 F Z’-}—m;‘ (7)
Next, the motion between M and M’ is represented only by the a
rotation matrix & as follows, i Y
M =3M (8)
Here we introduce parameters ¢ and ¢’ defined as follows,
m m,
t= 3 N = E
Z 4+ my Z'+my ’ ®
we obtain the following equations, Line Segment
r+tz A
M=(Z+myN, N= [a+ty] N (10} P(O)
¢

an A X

s 4tz
.A'{' = (Z! + ms)N!‘ 'Ne‘ = ai + ‘lyl
t'

For each line segment before and after motion we define unit vec-

tors along the line segments as I and I respectively, M (ml, ma, m3)
J = ...1.v_ I'= .l' (12) M (ml‘o m2’s m3')
NP V|
Substituting Eq.(12} into Eq.(10) and Eq.(11}, we get the following Fig.3 Coordinate system based on the object point.
equations,
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It

M (Z +my) NI, (13)
M = (Z'+my)|N|I. (14)

M and M’ has the same length, because they are relatively repre-
sented and denote the same line segment. As the Z components of
the coordinates of the end-points Z + m3 and Z' + mj’ are positive,
we can define the following value K from Eq.(13) and Eq.(14),

Z' 4 m,
=23ms VL (15)
Z+m, [N
Here it is possible to compute the value K, if ¢ and ¢’ defined in
Eq.(9) could be obtained.

After Eq.(8) representing the rotation in the 3D space can be
described by using the coordinates on the image as follows,

K

KN' = &N. (16)

In this equation the unknown parameters are &, ¢ and ¢'.

2.3 Constraint of Planarity

The relative representation of motion of two line segments is
shown in Fig.4. Here we define the relative vectors from one end-point
to another one of the line segments as M, and M, and those after
motion as M;’ and M,’. Then relationship between vector products
of M; and M3, and of M’ and M’ are given by using just the rotation
matrix @ as follows,

My x M, = (M, x M,). (an
From Eq.(10), Eq.(11) and Eq.(13) we get,

K K3 Ny x N, = (N; x N). (18)

In this equation the unknown parameters are $, t,, t,’, £ and &5’

3 Motion Estimation

3.1 Motion Parameters

When the correspondence between two line segments in the 3D
space is found from an image, the parameters in Eq.(16) can be ob-
tained, and so forth the parameters in Eq.(18) from the vector prod-
ucts of the line segments. In order to cover those relationships we
introduce matrices H and H' defined below,

H = [NoN., N, x N, (19)
H = [K.N(,K,N;,K.K, (v x )] (20)

From Eq.(16) and Eq.{18) we get,
H = $H, (21)
where @ is a unitary matrix, then we obtain the following equation,
HTH = HT$T$H = HTH. (22)

The above can be rewritten as the equations of components as follows,

e .

IKINgl = INJ’ (23)
12

LA AR (24)

KGNN, = NN, (25)

M
" P(0)
Z X
o M7
e

Fig.4 Constraint planes and vector products.

3.2 Linearization by using a given Relation

Eq.(21) states that if the relative lengths t and ¢’ could be com-
puted, it is possible to obtain the rotation matrix & by using the
relations of two line segments. Therefore we assume that the geo-
metrical relation of a pair of line segments on an object surface is
given. This assumption is obviously the coanstraint for obtaining a
unique solution for the parameters ¢ and ¢/. In general, the relation
between {wo line segments I; and {3 is given by using a rotational
matrix A as follows, neglecting their translational displacement,

rn+thz ry + taZ2
51+ t1y1 = A Sz + tzyz . (26)
i t2
where,
a; 6y a3
A= ay a3 as] . (27)
ar; o3 Gy

If the given relation is parallelism, the above equation can be

rewritten as,

i+ LT ry+ 2z

sttty | =a|s2+by2 |, (28)
tl tz

where, a is constant value. Here, we can eliminate a in Eq.(28), and
can solve in terms of ¢ and ¢’. Then we get,

T8, =T, 8
- 38y 153 . (29)
83T, < 83T+ Ta¥a — T
T,8, =T, 8
;= ELd) 183 (30)

T, =~ 8T+ T Y =T

Thus we can get the relative lengths ¢ and ¢’ by using the given
relation between line segments.

3.3 Motion Estimation by using Parallelism

As mentioned above, the parameters ¢ and t’ can be obtained by
using a given geometrical relationship between two line segmaents,
here parallelism. It is, however, impossible to compute motion pa-
rameters, i.e. the rotation matrix, by using just the relationship

CV-11.33



between parallel two line segments, because the equations derived
from them do not become independent. Therefore, we also introduce
virtual lines which are the line segments obtained by connecting each
end-point of two line segments not as to make diagonals. The virtual
lines are shown in Fig.5a. Next we show how to obtain the relative
motion in terms of K defined in Eq.(13) by following processes.

STEP.1 In Fig.5a the line segments I; and I3 denote the real line,
and I3 and {4 the virtual line. At first the parameters #;, ',
ty and 2’ can be obtained from parallelism of line segments Iy
and 12.

STEP.2 From the parameters #;, #;/, #; and t;’, we can get the
vectors Ny, Ny’, Na and Ny’ which are functions of #;, 8", &>
and #,". Substituting these results into Eq.(15) we have the
ratios of vector lengths Ky and K, which are for the real line
segments.

From next step we now get the parameter K for the virtual line
segments by using the computed parameters K and K, which
are for the real line segments.

STEP.3 Eq.(10) and Eq.(11) which define the parameter ¢ can be
rewritten as follows,

Z4+my= -1——:2-— (31)

We define the absolute coordinates along Z axis of each base-
point (the origin of local coordinates system) of the line seg-
ments as Zy, Zo, Z3 and Z;, and the relative ones of the end-
points as m;, my, m3 and m, paying attention to depth (Z axis)
component of all points. Then the absolute coordinates of each
point is shown in Fig.5b. As four line segments share their
base/end-points each other, we have following relationships,

Z‘ = 23 -+ Hay (32)
Zitm = Zitpy (33)
Zatpr = Z (34)

22 = Z (33)

Here we define the ratios of vector lengths for the virtual line
segment {3 as Ky, shown as below,

. Z +p,
I\ = _;—_9__ 36
? 23+ py (36)
Substituting Eq.(32) into Eq.(36) we get,

Ky= 5. (37)

Substituting Eq.(31) into Eq.(37) we obtain following equation,

2/ 1=t Zp

Ky = =
: Z, t—t, Z4p,
1 -t
= ——t K
T 38)

Thus the parameter Ry can be obtained from K. In the same
way, the ratios of vector lengths K for the virtual line segment
1, is solved as follows,

K= ZitB
Zo+py

Substituting Eq.(33) into Eq.(39) we get,

(39)

7
——

b 22 +lyz

5
199

b)
virtual line

paralie] line ———
Fig.5 Definition of the virtual lines.

K=22T8 g, (40)

Then, the parameter K for the virtual line segment can be
acquired by using K for the real line segments. It is self-evident
that we can solve them even for replacing the end-point and the
base-point of the line segment. Finally we can get components
of a vector which represents a direction of a virtual line segment,
in this case I3 or Iy, according to the next step (STEP.4).

STEP.4 Eq.(24) and Eq.(25) hold for the virtual line segments as
well as for the real line segments. These are written as follows,

| = 1P, (a1)

i

NN, (42)

1l

T,
K1 K;xvl Ivs

where Ny and K are given from Eq.(10), Eq.(11) and Eq.(1)
etc. As the equation: Ky = aK, derived from Eq.(38), Eq.(41)
and Fq.(42) have unknown parameters N3 and N3'. The un-
knowns Ny and N3’ can be expressed by ¢; and t3” using Eq.(10)
and Eq.(11), so Eq.(24) is regarded as a second order equation
with respect to ¢ and ¢/, and Eq.(25) as a first order equation.
Then we get two solutions for the above simultaneous equations.
Furthermore we can select the unique solution using coefficients
of variation, if the image data contains less error or noises.

On the other hand if we introduce the assumption that there exist
two pairs of parallel line segments, we can independently solve each ¢
and ¢’ from the parallelism and Eq.(29), (30). Therefore the solutions
are robust against added error or noise. The results of this will be
also discussed in the next section.

4 Experiments and Results

4.1 Estimation of Motion Parameters

The estimation of the motion parameters are performed for one
or two pairs of parallel line segments on the same plane (See Table 1).
The set of terminal points of four line segments as the input data is
one of the examples which Huang's method could not solve {5]. The
experiment is performed as follows,

At first, the terminal points of the line segments are given as
(X, Y5, 255) i = 1,--+,4,7 = 1,2, Next, the rotational and transla-
tional components are given, and then we get the coordinates of the
terminal points after the motion as (X}, ¥;;, Zi;'), i = 1,-+,4,) =
1,2. All the points are projected onto the image plane by using Eq.(5)
and are added random noises according to their values. Then values
ri = Zio - %;; and &; = Yio — ¥i1 are computed. The reason why we
added the random noise is that we must take into account the error of
quantization and miss-correspondence of the line segments between
images.
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In error free case, the estimated motion parameters are listed in
the second column of Table 1, and coincide with the true values. This
implies that this method is capable even when there exist more than
six points on the same plane, on the other hand it is not by Huang’s
method {5]. In addition, our method can get the solution with the
same accuracy, even if the translational components along X or ¥
axis get zero or if the rotational component is too small.

The next results are for a pair of line segments with 0.1% random
noise (See line segment 1,2 of Table 1 below). In this case we have two
solutions from Eq.(24). However we can select one plausible solution
according to the coefficient of variation. In the Tablel the coefficient
of the first solution {shown in third column} is much smaller than that
of the second one {shown in fourth column). Hence we can select the
first one as plausible solution. This means that the coefficients can
be used to select a plausible solution, even when the added random
noise gets large.

Table 1 Experimental results

AX=50. AY=60 . AZ=10
Estimation
One Pair
Troe Two ( 0.1 Noise
(Noise Free) Solution Solution
o1 0.5 0% 0.5010 -0.03401
a9 0.4 04 03984 ~0.5631
o3 0.7681 0.7631 0.7683 £0.8257
I 83 03 02976 03408
AX JAZ (mean) 5.0 5.0 4.865 2309
AY/AZ (mean) 6.0 6.0 5824 3.181
AX /AZ (CY) ] 0.02438 1.295
AYzaZ {CV) 0 002391 1325
CV: Coorfficient of Variance
Coordinates of Terminal {True (before Motion )
X Y rA b4 Y Z
Line 1 5 7 10 8 13 19
Line 2 3 12 10 1 20 2
Line 3 45 .13 10 54 3 13
Line 4 b B B 36 £ 15

Table 2 Experimental results (with random noise).

AX=30, AY=20, AZ=10
Noise(% I 80 o1 0.3 10 28
o 28 96 23957 Q.3862 23528 05973
2 2.1 Q7 0,701 0.7119 0.7276 0.6713

) 03867 04062 04388
(] 93 0.3 05006 05045  OSI7 04833
AX/AZ {mean) 39 30 30836 3m8 2303

$738
AY/AZ (mean) 20 20 2.0138 1.966 1.048 2338
AX /82 (CV) 29 004429 04581 02753 1.938
ay/az (CV) 99 006310 04607 03935 2170
CV: Coorfficient of Variance
inates of inal fore Mot
X Y Z X Y. A
Line 1 £2217 28290 $2.020 49878 63568 30.670
Line 2 30872 $4991 20142 34972 39994 32282
Line 3 246358 32590 35892 2048 13519 19.60%
in -48. 40 i 46089 633540 24441

4.2 Relation between Added Noise and Error

In order to examine the effects of the quantization error to the
solution, we have experiments for the terminal points of line segments
with 0.1%, 0.5%, 1% and 2% errors. The results for two pairs of par-
allel line segments are shown in Table 2. From the results our method
is suficiently robust for about 0.1% noise addition. Especially the ro-
tational components are much accurate, even when random noise is
added.

5 Conclusion

In this paper we proposed a new linear algorithm to estimate 3D
motion parameters of a rigid object from two sequential images by
using parallelism of a pair of line segments. We formulate the mo-
tion in 3D space by means of the relative coordinate systems paying
attention to the line segments on the surface of the object. Then
the motion can be described only by the rotational components, and
hence we get the nine nonlinear equations. We derived that if there

exist a pair of parallel line segments, the nonlinear equations can be
resolved into the linear ones. We also give a method to extract pairs
of parallel line segments. The present method seems especially effec-
tive for a parallelpiped object, because there must exist parallel line
segments on the surface of the object. When the motion trajectory
is smooth, it is not difficult to catch up with the parallel line seg-
ments. In addition, as the method achieves the linear solutions, the
algorithm is very simple and runs very fast.
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