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MULTI-POINT COMPLIANCE CONTROL
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Abstract. The present paper proposes a new method called multi-point compli-
ance control utilizing kinematic redundancy of the manipulators. The multi-point
compliance control can regulate the compliance of several points on the
manipulator’s links as well as the end-point compliance. We define those points
on the manipulator’s links as virtual end-points, and derive the joint compliance
which is able to control the virtual end-point compliance. It is shown that con-
trolling the virtual end-point compliance is useful for certain environments where
some obstacles impose restrictions on the task space of the manipulator.

INTRODUCTION

Compliance control is one of the most effective control methods for the
manipulators in contact with their environments, which can regulate compliance
or stiffness of the end-point motion of the manipulators according to the tasks.
Up to the present, several compliance control methods have been proposed (for
example, Salisbury, 1980: Kankaanranta and Koivo, 1988 ). Especially, the active
stiffness control proposed by Salisbury (1980) can determine the joint servo gains
5o as to achieve a desired end-point stiffness of the manipulator with redundant
joint degrees of freedom. All of them, however, consider to regulate only the
end-point compliance of the manipulators. [n contrast to them, the present paper
argues that kinematic redundancy of the manipulators should be positively util-
ized in terms of the compliance control.

Utilizing redundancy, the manipulator can perform subtasks while control-
ling the end-point compliance( Tsuji, Ito and Nagaoka, 1990 ). In the present
paper, we consider a compliance regulation of several points on the manipulator’s
links as a subtask of the end-point compliance control. For example, when a
manipulator close to obstacles performs a task which requires the end-point's
compliant motion, it is required to avoid a collision with the obstacles as well as
regulating the end-point compliance for the given task. In this case, we define a
virtual end-point as the closest point on the manipulator to the obstacle. Then
the compliances of the virtual end-points are regulated to avoid a collision in addi-
tion to the actual end-point compliance of the manipulator. We call this kind of
compliance control mulfti-point compliance control , and discuss how to specify
joint servo gains to achieve, as closely as possible, the desired multiple end-points
compliance. The manipulator loses redundant joint degrees of freedom as the
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number of the virtual end-points is increased, and fi
constrained. The method presented here can give the opt
the redundant and over-constrained cases and can assign o
end-point according to the given task.

.naily becomes Over
imal solution for both
rder of priority to tach

VIRTUAL ARMS AND VIRTUAL END-POINTS

We consider a multi-joint manipulator having m joints shown
Since the manipulator performing a task which requires end-point’s com 5
motion is close to some obstacles, the manipulator may colfide with ther dpu ant
unexpected disturbance forces. Then, as shown in Fig.1(b), we define the v;r: to‘
arm as an arm, the end-point of which is located at the closest point on the maUa.
pulator to a obstacle. Using the virtual arms, the interaction between the ma:f'
pulator and its environment can be considered within the framework 0’;
compliance control. For example, to avoid a collision with the obstacles due to

in Fig,l(a).

disturbance forces, the com-
pliances of the virtual end-

oints should be as small task "
P . . . ) coordinate system
(stiff) as possible in the direc-
ticn of the obstacles.

et the position vectors

in the joint coordinate and s

the task coordinate be 5 s dm'rtuas
m end-point
denOte[d as ,8 € R and world ) %‘Foordinate system
X € R’ respectively. Let also | coordinate system 4] )
NP4 L.

the corresponding force vec-
tors be denoted as TE€ R™ :
and F € R' where mand lare

the dimensions of the joint

and task coordinates. For
redundant manipulators, m
islarger than [.

(a) manipulator close to obstacles

When an external force ";ft““l end-point \, 7
F is applied to the end-point coordinate system N
of the manipulator(in the fol- 4 év\

lowing, we call it the actual
arm in contrast to the virtual
arm), we define compliance
matrices as

iX=C,F, (1)

(b) virtual arms

where  dX=X-X° and Fig.1 Actual arm and virtual arms.
df=8-8°, X° and 8° are
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equilibrium points of the corresponding vectors. C, € R™! and C;€ R™™ are
the end-point and joint compliance matrices of the actual arm respectively.
Using the Jacobian matrix Jy € RbXm relating the joint angle displacements to the
end-point displacements in the world coordinate system, we can obtain

Ce = RQ‘L)G]’JQTRQT, (3)

where Ry € R™!is a rotation matrix from the world coordinate system to the task
coordinate system. The above equation gives the kinematic relationship between
the joint compliance matrix and the actual end-point compliance matrix.

The kinematic relationships between the joint compliance matrix and the
virtual end-point compliance matrices can be derived in the same way. Let the
virtual end-point compliance matrix of the i-th virtual arm be denoted as
C,€ RM (1=1,2,- - - ,n—1), we can obtain

Cvi = R"JiCjJ"TR"T, (4)

where J; € R™™ is the Jacobian matrix relating the joint angle displacements to
the :-th virtual end-point displacements, and R; € R™!is a rotation matrix from
the world coordinate system to the virtual end-point coordinate system.

We concatenate the actual and virtual end-point compliance matrices, so
that we can simultaneously express the compliance relationships for alt end-
points. The new equation is given by

c=JcJT, (5)

where C € R™ ™ is a concatenated compliance matrix, and J € R™™ is a con-
catenated Jacobian matrix,

-Cc ] [ ROJO ]
C= - ,J = . (6)
0 - .
| Con-1] Ry 1]

It can be seen that finding the joint compliance matrix C; which satisfies (5) can
achieve the compliances of the actual and virtual arms simultaneously.

MULTI-POINT COMPLIANCE CONTROL

Now, let’s assume that the desired end-point compliance matrices are given
according to a task of the actual end-point and subtasks of the virtual end-points.
We wish to solve the compliance kinematic equation (5) for the joint compliance
matrix C;.

Depending on the location of the virtual end-points, the matrix equation
(5) may occur to be under-constrained, over-constrained or singular. Fig.2 shows
the three cases. The actual arm is a seven-link planar arm (m=7), and the
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dimension of the task space ({=3) includes two translations and one rotation.
Locating a virtual end-point on the fourth link as shown in Fig.2(a), the desired
concatenated compliance matrix C " in (6) has 6 diagonal elements. Therefore,
the matrix equation (5) is under-constrained and the concatenated Jacobian
matrix Jis of full row rank, as long as the actual arm is not in singular configura-
tions. In Fig.2(b), five virtual arms are located. Since the desired concatenated
compliance matrix has 18 diagonal elements, the manipulator is over-constrained.
The concatenated Jacobian matrix Jis of full column rank, and any joint compii-
ance matrix C; does not satisfy (5). On the other hand, Fig:2(c) shows a virtual
arm which has its end-point on the sixth link. At first sight, the manipulator
seems to be under-constrained. In this case, however, since there is only one joint
between the actual and virtual end-points, it is impossible to regulate the end-
point compliances of both the actual and virtual arms at the same time. The con-
catenated Jacobian matrix J is not of full rank. Consequently, the rank of the
concatenated Jacobian matrix dominates the matrix equation (5). :

Maximum rank decomposition of the concatenated Jacobian matrix J gives
us an unified approach to all three cases.

J=J.J, (M)
where J, € R™? and J, € RP*™ have the same rank as J ; rankJ = rankJ, =
rankJ, = p. Substituting (7) into (5), we can see

C=JJ,Ch,7I,T. (8)
The matrices J, and J, express an over-constrained part and an under-
constrained part of the concatenated Jacobian matrix J, respectively.

To derive a general solution of the matrix equation (8), we should solve it
for a matrix Jj Cj.beas the first step. Setting

@ virtual end-point

(a) an under-constrained (b) an over-constrained  (c) a singular case
case case

Fig.2 Three cases of the virtual arms.
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Cp =, CiJ, 7, (9)

3
we have

C=17,C7,7. (10)

in general, since the matrix J, is of full column rank, the solution Cj, which satis-
fies (10) does not exist. In this case, the goal is to find a matrix Cj, to minimize

(C)=l|W(C™=C)WT||= [|W(C"=J,Cp, Y W], (11)

where C " is a desired concatenated compliance matrix. || A]| stands for matrix
norm defined by

Al ={ t{ATA] 7, (12)
where tr[{A TA] denotes a trace of matrix ATA. The weighting matrix
W e R™ in (11) is a nonsingular diagonal matrix, which can assign order of

priority to each end-point according to the given task.
The necessary condition that the optimal solution must satisfy is

Substituting (11) into (13) and expanding it, we obtain
Cpp = (WIYrWwewTi(wi)*t7 (14)
(WI)* = {(wr)Twr Y (wi)T, (15)

using the partial differential formulas about trace of matrix { Athans, 1967 ). This
solution Cj, gives the end-point compliance matrix C which is the closest one to
the desired compliance matrix C " in terms of the cost function (11}.

The second step is to solve (9) for the joint compliance matrix C; using the
matrix Cj. Since the matrix Jj is of full row rank, the solution C; whxch satisfies
9 always exists. Using the Moore-Penrose generalized inverse of Jy, we obtain
the general solution ( Tsuji, Ito and Nagaoka, 1990 ),

6= (ST + (2= 1,7 25777, (16)

where J," = J,7(J;7,7) " € R™P and Z € R™ ™ is an arbitrary constant matnx
The matrix Z may be utilized in the other kind of subtasks.

Consequently, we can get the optimal joint compliance C; using (14) and
(16). The method presented here can be applied to all the cases shown in Fig.2.
In the under-constrained cases, since J, = I, (a InxIn unit matrix) and J, = J ,
wecansee Cj = C7. From (16), the joint compliance matrix is given by

C;=TrC (JNy + [z~ THiz(Tr )T, (17)

On the other hand, in the over-constrained cases, since J =J and Jy=1  , we can
see Cjy=C;. From (14), the joint compliance matrix is given by

C;=(Wn*wewij(wn#iT. (18)

Obviously, we can use (14) and (16} in the singular cases.
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APPLICATION TO OBSTACLE AVOIDANCE

The multi-point compliance control is applied to an obstacle aveidance
problem using a six-link planar manipulator as shown in Fig.3.

The manipulator is needed to perform a task which requires its end-point to
be soft in the direction of z axis { 0.05m/N ) and to be stiff in the direction of y
axis and its rotation ( 0.01m/N and 0.01 rad/N, respectively ) in the task coor-
dinate system. And the third link of the manipulator lies between a couple of obs-
tacles. A virtual end-point is located on a middie point of the third link. To avoid
a collision with the obstacles, we wish to regulate the virtual end-point compli-
ance to be stiff in the direction of y,; axis and its rotation ( 0.01 m/N and 0.01
rad/ N , respectively ), while satisfying the desired end-point compliance of the
actual arm. As a result, the desired concatenated compliance matrix C” is given
by

C* = diag.[0.05,0.01, 0.01, 0.05,0.01, 0.01] .

In this case, the dimension of
the desired compliance matrix
is the same number as joints of
the actual arm. Therefore, the A
concatenated Jacobian matrix %
Jissquare and nonsingular. ;

e D e

O

) A | obstacle H

A simulation experiment %*"' !

was performed using the PD )uﬂ-%’ i
control, va g, G '

T=K;d8+B;8, (19)

where K;€ R™™ is a position
feedback gain given as an

¢ virtual end-point

inverse of the joint compliance -
matrix C; and, B;€ R™ ™ is a 8= {12, ~08, 1.4, ~0.6, 1.2, -1.0 )T (RAD)

nonsingular velocity feedback
gain. We used the Appel
method for the manipulator
dynamics { Potknjak and
Vukobratovic, 1978 } and the
link parameters of the manipu-
lator are shown in Table 1.
Fig.4 shows a response of

Fig.3 A six-link planar manipulator
close to the obstacles (a
non-singular case).

Table 1 "Link parameters.

. R Link i (i=1,- - ,6
the .ma.mpu!ator .uader the Tength(m) : (0_2 )
multi-point compliance con- mass(kg) 157
trol, where the disturbance center of mass(m) 0.1
force, f=[..20’ -20, 0] T(N’) in moment of inertia{kg-m’) 10.0

terms of the task coordinate
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system, is exerted to the actual end-point. The responses of the actual and virtual
end-points are shown in Fig.4(b) and (<), respectively.

On the other hand, Fig.5 shows a simulation result under the active stiff-
ness control{ Salisbury, 1980 ) with the same condition as Fig.4, where the
desired end-point compliance cannot include the virtual end-point one. The
response of the actual end-point is almost same between Fig.4 and Fig.5. In
terms of the virtual end-point, however, the effect of the multi-point compliance
control appears clearly. In the active stiffness control, the large virtual end-point

displacements for the disturbance force occur in the direction of the obstacle as

o  virtual end-point

initial posture
~~-=- fingl posture
(a) Manipulator configurations

{scc)
{em)
S 10
b _

v

end-point displacements

(b) Time responses of
the end-point

t 2, s . ‘ 1‘0
(sec)

virtual end-point
displacements
< o
}" MR |
&

(¢) Time responses of
the virtual end-point

Fig.4 A motion profile for distur-
bance force under the multi-
point compliance control.
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]
]
!
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tnitial posture

===~ final posture

(a) Manipulator configurations

o
g {em) ; (slc;)
£ o< N AR .
&
2. v
2
g -5
z
.10
~ . *
g (b) Time responses of
- the end-point
£ 2 (em)
S e *n
85
~ §
5 bt Yny
~ 2, — -
s&t 5 10
£ S (sec)
=

(c) Time responses of
the virtual end-point

Fig.5 A motion profile for distur-
bance force under the active
stiffness control.
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shown in Fig.5. Since the multi-point compliance control can regulate the virtual
end-point compliance, the virtual end-point displacements are very small as
shown in Fig.4. It can be seen that the multi-point compliance control can regu-
late the configuration of the manipulator for any external force through the vir-
tual end-point compliances. Therefore it is effective for the compliance cantrol of
the manipulator close to the obstacles.

CONCLUSION

In this paper, we proposed the multi-point compliance control method
which was able to regulate the compliance of several points on the manipulator’s
links as well as the end-point compliance utilizing kinematic redundancy. The
method can be applied to all kinematic conditions of the manipulator including
the redundant, over-constrained and singular cases, and can give the joint servo
gains to achieve, as closely as possible, the desired multiple end-point compli-
ances. It is useful for certain environments where some obstacles impose restric-
tions on the task space of manipulators, such as many chemical plants.

Future research will be directed to extend the multi-point compliance con-
trol to the case where the end-point is mechanically constrained by the task
environments. In that case, the virtual end-point compliance is determined not
only by the joint compliance of the corresponding virtual arm expressed in (5) but
also by the other joint compliance and the object compliance. As a result, the
manipulator must be considered as a parallel link structure. This also leads to a
development of the compliance control of the multi-fingered robotic hands and
the multiple robot arms.
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