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ABSTRACT - In this paper, we propose a new method
to transform the motor impedance from the end-point
intc the joint level. The CNS regulates the
mechanical impedance of the end-point through the
muscle and joint, which requires this kind of
transformation about the motor impedance. Then it
is shown that the redundancy of musculoskeletal
system allows to select the impedance of each joint
maintaining a specified end-point impedance.

INTRODUCTION

Motor impedance provides the static and dynamic
relations between force and motion. Fine
regulation of the motor impedance in multi-joint
arms is one of the most important issues to perform
tasks which require the dynamic interactions to
their environments. For example, some frequently
cited tasks such as turning a crank, inserting a
peg and driving a screw , require stiffness
regulation in terms of the task space coordinates
and assign appropriate stiffness along each degrees
of freedom[1].

Hogan claimed that the position control and
force control were simply degenerate or extreme
cases of impedance control and showed that
biarticular muscles and redundancy of joint degrees
of freedom in human arm played important roles in
fine regulation of its end-point impedance(2].
Mussa Ivaldi showed that the joint stiffness could
act as a constraint condition to the inverse
kinematics problem of redundant arm{3]. However, we
pay attention to the fact that the CNS is able to
regulate the end-point impedance only through the
muscle and joint[4][5]. This means that the CNS has
to find some way to transform the desired end-
point impedance into the joint and muscle
impedances.

In this paper, we propose a new method to
transform the motor impedance from the end-point
level to the joint level. And it is shown that the
redundancy of musculoskeletal system allows to
select the impedance of each joint maintaining a
specified end-point impedance.

THE MOTOR IMPEDANCE

We consider an upper limb model in Fig.1. Let
the position vectors described in the joint and
end-point coordinates be denoted as 6 eRP and Xe RT
respectively. Let also the corresponding force
vectors be denoted as TERR and F €RF. nandr
are the dimensions of the joint and end-point
coordinates, respectively.

Japan

The transformation from © to X is nonlinear.
The Jacobian matrix J is the locally linearized
transformation matrix which is defined by[6l,

ax = J(e)ase . (1)

Using the Jacobian matrix J, the transformation
from F to T is given by

v = JIF , (2)

The motor impedance is a general term for
stiffness, viscosity and inertia. Here, the
stiffness transformation between the joint
coordinates and the end-point coordinates is
discussed. Note that the same holds for the
viscosity relationship.

The stiffness matrices are defined by,

1) end-point level ; F = -K.dX (3)
2) joint level ;T o= -K;df (4)
where dX=X-X€ and d6 = 6- 6%, X© and 6¢ are

equilibrium points of the corresponding vectors.
Using (1)-(4), we can see,

K5 = ITKeT . {5)

The Jacobian matrix J represents the link
structures of the human arm.

The corresponding transformation of compliance
matrices is given by

Ce = JC33T (6)
where,

Ce = Ko~ n

Cj = Ky~1 . (8)

If the stiffness matrix Ky is nonsingular in the

end-point coordinates, the joint compliance matrix
C; seems to be computed from (5) and (8). However,
ig the arn has redundant degrees of freedom such as
human arm, the transformation of motor impedance
occurs a delicate issue. That is, even if Ky is
nonsingular and Jacobian matrix J is of full row
rank, K; may not be nonsingular matrix. Then C:
can not be computed from (8). However, it shoulé

Fig.1 A Model of Human Upper Limb
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be noted that the excess of degrees of freedon of
the joint coordinates allows to select the join

impedances in the redundant arm as the needs of the
task.

IMPEDANCE TRANSFORMATION IN REDUNDANT ARM

When the end-point stiffness matrix Ko is given
and is nonsingular, let's consider the method %o
transfornm K¢ into the joint stiffness.

The end-peint compliance matrix is given by

Ce = Kg1 = J033T 9}
from {6) and (7). This implies that the
transformation problem of stiffness matrices is
equivalent to solving the matrix equation (9) with
respect to the joint compliance matrix Cj.

The general solution of the matrix eduation (9)
is given by

C; = J*CUD* + [2-3*52(37 )T (10}
where Z €ROXD is an arbitrary matrix and the
superscript ' denotes the Moore-Penrose generalizsd
inverse[6],

proof.  Substituting (10) into (9), we have
36537 = J3tCa(arH)T + Jlz-staz(rtnT1aT
= Cq - “tn

Hence, it is clear that C; in (10) is a solution of
the matrix equation (9). On the other hand, let an
arbitrary solution be denoted as S, then we can
write

S = It (IT)Y + [24-J%024 (3 DNTY (12)
where Zq is defined by

Zy = S - It (3NT . (13)
This completes the proof. {1

{10) means that the compliance of each joint can
be arbitrarily specified through the matrix Z,
while maintaining the desired end-point impedancs.
Note that the same may hold in terms of the
viscosity transformation.

Table 1 shows the simulation results of
stiffness transformation with a three-links planar
arm (Fig.2). Let the end-point stiffness K, be
given as an identity matrix. In case 2, the
compliance of wrist joint is larger than that of
the shoulder and elbow joint. Conversely, in cass
3, the compliance of shoulder joint is larger than
the others. Note that the end-point stiffness in

all cases is the identity matrix and that Cj in
case 2 and 3 are non-singular matrices.

CONCLUSION

In this paper, we proposed the transformation
method of the end-point impedance into the joint
impedance. It was shown that the redundancy of the
musculoskeletal system allowed to select the
impedance of each joint maintaining a specified
end-point impedance, which explains a part of the
flexibility of human movements.
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Fig.2 A Three-Link Planar Arm

Table 1 Joint Compliance Matrices with the Same End-Point Compliance

Case 1 Case 2 Case 3
The Arbitrary 6.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
Transformation 0.0 0.0 0.0 0.0 10.0 0.0 0.0 80.0 0.0
jatrices, 2 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 10.0
The Joint 12.4 -4.4 -4.8 9.3  0.69 0.45 20.8 -17.0 12.2
Compliance ~4bh 9.3 4.9 0.69 0.66 -4.0 -17.0 27.9 -17.0
‘atrices, Cj -4.8 4.9 3.2 0.45 ~4.0 98.3 12.2 ~17.0  0.01

nominal posture : 87 = -20, 83 =15, 83 =50 {deg.)
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