154 Tsuji, Tsujimura, & Tanaka

Chapter VII

Myoelectric
Teleoperationofa
Dual-Arm Manipulator
Using Neural Networks

Toshio Tsuji, Hiroshima University, Japan
Kouji Tsujimura, OMRON Corporation, Japan

Yoshiyuki Tanaka, Hiroshima University, Japan

Abstract

In this chapter, an advanced intelligent dual-arm manipulator system
teleoperated by EMG signals and hand positions is described. This
myoelectric teleoperation system employs a probabilistic neural network,
so called log-linearized Gaussian mixture network (LLGMN), to gauge the
operator’s intended hand motion from EMG patterns measured during
tasks. In addition, an event-driven task model using Petri net and a non-
contact impedance control method are introduced to allow a human
operator to maneuver a couple of robotic manipulators intuitively. A set of
experimental results demonstrates the effectiveness of the developed
prototype system.
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Introduction

Many researchers have actively studied teleoperation technology as an effective
human interface for supporting an operator in various tasks. However, current
technology is still far from realizing an autonomous robotic system that has high
intelligence for auto-recognition and judgment in human task situations. If the
operator can control a tele-exist slave-robot as his own arm with natural feeling,
task performance will increase.

In this chapter, an advanced intelligent dual-arm manipulator system teleoperated
by EMG signals and hand positions is described. The presented myoelectric
teleoperation system employs a probabilistic neural network, so called log-
linearized Gaussian mixture network (LLGMN), to gauge the operator’s in-
tended hand motion from EMG patterns measured during tasks. In addition, an
event-driven task model using Petri net and a non-contact impedance control
method are introduced to allow a human operator to maneuver a couple of robotic
manipulators intuitively. A set of experimental results demonstrates the effec-
tiveness of the developed prototype system.

Back_ground

In the late 1940s, Argonne National Laboratory developed the first teleoperation
system that could handle radioactive materials in a nuclear reactor using a robotic
manipulator from outside. The motion of the master-arm was transmitted to the
slave-arm in the nuclear reactor via amechanical link structure (Sheridan, 1992).
Fundamental concept of current teleoperation systems using electric signals was
proposed by Goertz (1954). Since then, many researchers have actively studied
teleoperation technology as an effective human interface for supporting an
operator in various tasks (Shimamoto, 1992; Yokokohji & Yoshikawa, 1994;
Yoon et al., 2001; Mobasser et al., 2003; Ueda & Yoshikawa, 2004).

Some teleoperation tasks require dexterous manipulation of a robotic arm. If the
operator can control a tele-exist slave-robot as his own arm with natural feeling,
task performance will increase. However, controlling the robot manipulator by
means of a conventional interface system, such as a joystick or a master-arm
robot, is difficult because it requires highly skilled and experienced system
operators. Experimental studies utilizing bioelectric signals, such as electroen-
cephalogram (EEG) and electromyogram (EMG) as an input of the interface
system have been undertaken (Farry et al., 1996; Kim et al., 2001; Englehart &
Hudgins, 2003; Suryanarayanan & Reddy, 1997;Tsujiuchietal., 2004; Wolpaw
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etal., 1998). However, since previous studies focused mainly on reproducing the
specified operator’s motions by arobotic device, it is almost impossible to apply
those proposed systems to practical situations in an actual task environment in
which human-like skillful and flexible movements, as well as the cooperative
operation of a dual arm, will be required.

This chapter argues cybernetic control of a dual-arm manipulator system
teleoperated by EMG signals and hand positions, in which the operator can
control two manipulators intuitively by his arm movements with regulating
muscle contraction levels. To realize skillful cooperative operations of the dual
arm in general task environments, the developed system employs an event-
driven task model and a non-contact impedance control method. Moreover, high
recognition performance is achieved by using a posterior neural network thatcan
adapt the variation of the EMG signals caused by individual differences,
electrode locations, physical fatigue, and perspiration.

An Intelligent EMG-Based
Dual-Arm Manipulator System

Figure 1 illustrates the control structure of the proposed teleoperation system
using EMG signals, where the system consists of the forearm control part and
the upper arm control part for each arm. The prosthetic hand (Imasen lab.) is
attached as each end-effector of two robotic manipulators (Move Master RM-
501: Mitsubishi Electric Corp.), and each arm has seven DOFs as illustrated in
Figure 2. In this system, the section from the first to third link is defined as the
upper arm part, while the rest, including the end-effector, as the forearm part.
The positive joint rotational direction and the standard link posture of the forearm
are presented in Figure 2.

Forearm Control Part

The forearm control part processes the measured EMG signals transmitted by
the wireless equipment and extracts feature patterns corresponding to the
operator’s intended motion. This subsection explains one arm of the dual-arm
system. Each motion of the forearm’s joints (J,, J, , J ., J, ) is controlled
according to the operator’s intended motion, estimated by the trained neural
network. System parameters are then regulated automatically so that dynamic
properties of the robotic arm are adapted for the task model of a given task. In
addition, the forearm motion uses impedance control to realize human-like skillful
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Figure 1. The dual-arm manipulator system using EMG signals
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movements in the coordinated task by dual arms. Detailed explanations of each
function in the control system are given below.

EMG ~S_i,c_g;nal Processing

EMG signals measured from L pairs of electrodes attached at one arm of the
operator are digitized by an analog-to-digital (A/D) converter (sampling fre-
quency 1.0 [kHz]). Then, the digitized data are amplified, rectified, and filtered
through a digital second-order Butterworth filter (cut-off frequency: 1.0 [Hz]).
These sampled signals are defined as EMG (n) (/= 1,2,---,L).
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EMG patterns are extracted from a set of EMG (n) and represented as a feature

pattern vector x(n) =[x,(n),x,(n),",x,(n]" € R* by

EMG,(n)— EMG/ & EMG™ - EMG,
EMG™ ~EMG, ‘= EMG,(n)- EMG,

x;(n)=

(1)

where FpsG; denotes the mean value of EMG,(n) measured in relaxing the
muscles, and EMG,™ are the values of EMG signals measured in the maximum
voluntary contraction. Notice that x(») is normalized to make its norm equal 1.

Also, using EMG signals, the force information in arm movements is calculated
by

1 & EMG,(n)— EMG)
Fm;(n)=~2 ;,,m —_— (2)
LTS EMG™ - EMG;

The value of F,, .(n) is utilized as a measurement to decide whether the operator

takes an action for operating the robotic arm or not.

Pattern Classification Using Probabilistic Neural
Networks

An extracted EMG pattern is regarded as a stochastic one since the EMG signal
is the composition of spike potentials generated in the muscle fibers. In this study,
a log-linearized Gaussian mixture network (LLGMN) (Tsuji et al., 1994, 1999;
Fukudaetal.,2003) is utilized as a neural network to estimate the intended hand
motion of an operator. This network approximates a probability density function
of discriminating data by a Gaussian mixture model through learning with sample
data and can calculate a posteriori probability of the operator’s motion with high
discrimination performance from EMG patterns. Accordingly, the proposed
system can be manipulated by an operator who does nothave knowledge of EMG
signals.

The input of the LLGMN X(n)e ®” is calculated with the vector x(n)e R* as
follows:
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X(n)=[1,x(n)" » X, (n)’ X, (n)x,(n), -, x, (m)x, (n),
X, (n)z s X, (M)x, (1), x,(n)x (), X, (n)z ]T

(3)

The first layer consists of H(=1+L(L + 3)/2) units corresponding to the dimension
of X(n), and the identity function is used for an activation function of each unit.
The output of the unit #, VO, (n), is the same value of V] (n):

1,00 =X, (), @

"0, (m)="1,(m) )

The second layer consists of the same number of units as the total number of
components of the Gaussian mixture network. Each unit of the second layer
receives the output of the first layer VO, (n) weighted by the coefficient wi*"™,
and outputs a posteriori probability of each component. The relationship
between the input @/, (n) and the output ‘”Ow(n) in the second layer is defined
as

H
2) Im (n)= 2 m O,,(n)w,(f"”), ( 6)
h=l
exp[*I, . (n)
{2)0.;%,”:(”) = K Mk.p[ £ ( ] ]
Z zexp[(n]k',m'(n)] (7)
k'=1m'=]

where wM) =0 (h=1,2,--,H). Note that (7) can be considered a generalized

sigmoid function (Tsuji et al., 1994).

The unit & in the third layer integrates the outputs of M, units in the second layer, and
the relationship between the input I (n) and the output @O (n) is described as

M,
Prm=Y ?0,,n), (8)

m=l
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Table 1. Structure of the LLGMN (Fukuda et al., 2003)

NS CON

Y, (n)="I, (n). 9)

The output of the third layer ¥,(n) corresponds to a posterioriprobabilities of the
class k for the inputted EMG pattern x(n). The detailed structure of the LLGMN
is presented in Table 1. '

Next, the network’s learning method is explained. Consider a supervised learning
with a teacher vector T =[1,*,.... T ..., T¢"1" for the nth input vector x(n). If
a teacher provides a perfect classification, T\ =1 for the particular class k and
7, =0 for all other classes. LLGMN is trained using a given set of N data x(n)

(n=1,2,---,N)tomaximize the likelihood function. The employed energy function
J for the network training is defined as

N N K
J= 2T =22 Y (), 10
n=l a=l k=l

and the learning is performed to minimize this energy function (i.e., to maximize
the likelihood function). The learning rule is designed with the concept of terminal
attractor (TA) so that the convergence time of the function can be specified
(Fukuda et al., 2003; Tsuji et al., 1994).

The proposed system uses off-line learning in the preliminary stage to perceive
the EMG patterns corresponding to each of Kth target motions, while the online
learning method adapts for the variation of EMG properties caused by muscle
fatigue, sweat, and so on.
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Task Estimation Using Petri Nets

In operating a dual-arm system, the operator has to skillfully coordinate the
motions of right and left robotic arms. However, the classification results from
the EMG pattern cannot be adopted directly because they are not considered to
other arm conditions. This part estimates a task state of the coordinated tasks by
the dual arms based on the time history of task states.

Let us imagine that an operator is pouring water into a cup held by the left arm
from a bottle held by the right arm. In this task, a human should not drop a glass
or bottle from their hand while pouring water. In this study, such a task flow is
described with a task model using Petri nets (Reisig, 1988) that are proper for
dealing with an event-driven task. Thus, the proposed system can estimate
current task states and can regulate control parameters according to the
estimated task states.

A task model N=(P,T;F,M) can be expressed with the place set P= {p ,p,,--",p,},
the transition set '= {#,,t ,--,¢,}, thearc set ¥ C(Px T) u(T'x II), and the initial
marking set M: P — N U {w}. N indicates a set of positive integers, and @ is
the infinity. 7 and P denote the numbers of transitions and places. The initial
marking m € M is settled on the place p, that corresponds to the standby state
(Fukuda et al., 2002).

Figure 3 presents an example of the task model using Petri nets, where a token
denotes the current state (the standby state), and the branch subnets connecting
this place represent the details of each task. The tree structure of the task model
is suitable for recomposing its structure according to the change of tasks.

The task model calculates a modifying vector 7, according to the estimated
task state by

ym =[Ym()"y}nl’”."YMK’YM(KH)]T (l l)

where m € {0,1,2,---,P} is the index of the place in the task model; ¥, ,-,7, .
ind‘icates the weights.correspon‘din gtothe motion?s; Yoo ar]d Yo+, the modifying
weights of a do-nothing operation and a suspending motion, respectively.

The modifying vector is then sent to the motion determination part. Also, the
estimated power F,, (n) given in (2) is modified using the parameters f, as

1 & EMG,(n)—EMG! .
FEMG(n):—'z 1) —— o (12)
L3 EMG™ — EMGi
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Motion Determination

Motion is determined by the estimated force F,, .(n) given in (12), and the
probability of the do-nothing operation Y (n) is calculated by the following

membership function:

) =~ tan” {4 (P (D= B)}+05, (13)

where 4, and B, are positive constants. The value of ¥ (n) approaches 1 as
F,(n) approaches 0, while Y (n) decreases as F,, (n) increases as presented
in Figure 4(a).

Next, to evaluate the accuracy of discrimination results by the neural network,
the probabilities of suspending motion Y (n) (k=1,2,--,K : K is the number of
target motions) is defined with the entropy H(n):

X
H(n>=-—;$;Yk(n)1ong (n). (14)

The entropy is calculated by a posteriori probabilities of the operator’s motions
that are the output of the trained LLGMN, which may be interpreted as a risk of
ill recognition. For example, the entropy is low when the energy function is
thoroughly reduced, in which one of a posteriori probabilities takes a remarkably
large value and the other ones are close to 0. In contrast, when the output of
LLGMN is ambiguous, the entropy is high. This entropy tends to increase when
EMG patterns are disturbed by an unexpected external event, such as the
switching of the operator’s motions and unexpected noise signals.

Figure 3. An example of the task model
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By means of the entropy given by (14), the probability of suspending motion
Y, . (n)is defined as

Yy (n) = -};tan" {4, (H ()~ B,)}+05, (15)

where 4, and B, are positive constants. [fthe entropy H(n)is close to 0, ¥, (n)
becomes close to 0. However, if H(n) increases, Y, (n)is close to 1 as indicated
in Figure 4(b).

Finally, the motion k with the maximum value of the probability O,(n) is selected
as the operator’s intended motion:

YInI( er (n)

K+1 ?

2 Y Z;(n) (16)
J=

O,(n)=

where Z (n) (k=0,1,---,K,K + 1) is calculated using ¥ (n), Y, (n),and ¥, (n) k=
0,1,---,K)as

Y,(n) (k=0)
Z (n)=1(1 ~Y,(nm)(1 -Yea (”))Y; (n (k=12,---,K), (17)
(1=, ()Y, () (k=K+1)

Adaprtive Learning Algorithm

When the operator controls the dual-arm manipulator for many hours, it is
necessary to consider variations of EMG properties resulting from muscle
fatigue, sweat, and the change of the characteristics and the electrode position.
The muscles of a non-dominant arm fatigue more readily compared to the
dominant arm. Therefore, an online learning method that can adapt to such
variations of EMG properties is needed to discriminate the EMG pattern
successively for a long-term operation. However, the correct teacher signals
cannot be obtained in the operation since it is impossible to directly find the
operator’s intended motion.
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Figure 4. Membership functions for do-nothing operation and suspending
motion (4,=4.0, B =0.5,4,=8.0, B,=0.7)
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For that, the replacement of learning data and the relearning of LLGMN are
executed according to the reliability of outputs of the LLGMN for the EMG
pattern x(n), that is, the entropy H(n) given in (14). If the entropy H(n) is less
than a given threshold H , the EMG pattern x(n) is replaced with the oldest
pattern in the set of the stored learning data. The weights of LLGMN are then
updated using the new set of the learning data only when the energy function J
is decreased by the relearning procedure to avoid incorrect learning.

Bio-Mimetic ImPedance Control

Generally speaking, a human forearm is compliant when holding a soft object,
while it stiffens when holding a hard or heavy one. Such dynamic properties of
human movements can be represented by the mechanical impedance param-
eters: stiffness, viscosity, and inertia (Tsuji etal., 1995). Ifthe human impedance
characteristics of the forearm can be applied to control the robotic manipulator,
itis possible torealize natural movements like a human forearm. This system tries
to realize natural motions of the end-effectors by using the human impedance
characteristics estimated from EMG signals (Fukuda et al., 2002).

The dynamic equation of the jth joint of the prosthetic forearm under impedance
control is defined as

1,9,+B,(a},)9‘l,+1<j(aj)(oj—9;):;;‘-‘, (18)
a “L_lfI(.IX
g =LK
T K@) (19
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where I B (oc) and K (a ) are the inertia, viscosity, and stiffness. The viscosity

and the stlffness are related to the muscular contraction ratio «, represented by
anon-linear model using  (Fukudaetal.,2002). 6, and 6] are the measured and

equilibrium angles of the jth joint, and 7;"and 7}
prespecified maximal torque for the motion k.

are the external torque and the

The driven joint j is selected according to determination result £ in the motion
determination part. The muscular contraction ratio @ is defined using F, (n)
as

oc.(n):: F|1_M(_,(n)

EMG™’ (20)

where EMG;™™ is the mean value of ', . while keeping the maximum voluntary
contraction (MVC) for motion k (k = 1,2,--- K). If a discriminated motion is
determined as the suspending motion, the motion keeps the last motion as 7(n)
=17(n-1).

The desired joint angles are calculated in the impedance filter part, and they are
controlled using the tracking control part as illustrated in Figure 5, where K , K,
K are the gain parameters for a PID control method. This method realizes a
natural feeling of control similar to that of the original limb, if the impedance
parameters are set to similar values of the human arm. In this system, the
impedance parameters are updated to suitable values according to the task state
estimated by a task model.

Mer Arm Control Part

The upper arm control part uses a 3-D position sensor (ISOTRACK II:
POLHEMUS, Inc.) as an input device for the control signal. The operator

Figure 5. Block diagram of a biomimetic impedance control part
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attaches this sensor at his or her wrist, and the desired joint angles of the forearm
(8,,.9,,,90,,) are calculated from the measured operator’s wrist position. The
motion of each joint is controlled by the PID control method. The system adopts
the non-contact impedance control (Tsuji & Kaneko, 1999) to adjust dynamic
characteristics of the dual-arm according to the relative movements between
them.

Figure 6 schematically represents the non-contact impedance control. Consider
the case in which an object (the left end-effector) approaches the right
manipulator, and set a virtual sphere with radius » at the center of the end-
effector. When the object enters the virtual sphere, the normal vector from the

surface of the sphere to the object dX, e R’ can be represented as

dX =X, —rn, 21
& =0
W =0 #2)

When the object is in the virtual sphere (|X,|<r), the virtual impedance works

between the end-effector and the object so that the virtual external force F, e R’
is exerted on the end-effector by

F =

o

M dX, +B,dX, + K, dX X,|<r
{ [ 0+ [ [ o [y (I I ) (23)

0 (X, |>r)

where M, B, and K = R" represent the virtual inertia, viscosity, and stiffness
matrices. Note that | = 0 when the object is outside the virtual sphere or at the
center of the sphere. Thus, the dynamic equation of the end-effector for non-
contact impedance control can be expressed with (22) and (23) as

M,dX +B,dX +K,dX = F,

int

+F,. (24)

Because of the virtual sphere defined at the end-effector, a virtual external force
F, is exerted on an end-effector of the manipulators, so that the robot can be
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Figure 6. Schematic representation of a non-contact impedance control.
One arm has virtual sphere, while the other arm does not have it.

controlled before contact with the environment. Also, the existence and radius
of the virtual spheres and virtual impedance parameters can be suitably changed
by a task model during tasks.

Feedback Part

Before the operation is started, an operator has to check whether the EMG
signals are measured by using the graphical feedback display, shown in Figure
7(a). After calculating gpsG; and EMG™ (Figure 7(b)), the EMG pattern is
extracted for each motion to collect teacher vectors (Figure 7 (c)). The LLGMN
is then trained with the teacher vectors (Figure 7(d)). Finally, the operator
checks the motion-discriminated results (Figure 7(e)). If the discrimination
results are improper, the teacher vectors are measured again for the learning of
LLGMN.

The operator controls two manipulators by watching a set of monitors placed in
front of him or her. The image sequence is captured by a pair of cameras as
shown in Figure 8(a), and the computer graphics of the task environment are
provided as feedback to the operator in Figure 8(b). Camera A is set up at the
back of the manipulators, and Camera B is set up at the side of the right arm.
Camera B uses Nu-View (3D.com, Inc.) to construct a 3-D perspective image,
so that the operator can find three-dimensional information of the virtual
environment by wearing LCD shutter glasses.
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Figure 7. Graphical display for the myoelectric teleoperation
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Figure 8. An operator maneuvering the teleoperation system via feedback
displays

(@) o | (b)

Copyright © 2006, ldea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Myoelectric Teleoperation of a Dual-Arm Manipulator Using Neural Networks 169

Figure 9. Experimental apparatus of the task environment in the remote
place '

Experiments

Experiments were conducted with four male subjects (graduate students, 23-25
years old; Subjects A, B, and C: right handers; Subject D: left hander) to
demonstrate the verification of the developed dual-arm manipulator system.

Operationlof Dual-Arm Manipulator

A subject was asked to perform a given task including subtasks: grasp a bottle
with the right hand, remove the bottle cap with the left hand, and pour from the
bottle into a cup. Figure 9 shows the robot manipulators and task environment
established in the remote place. Table 2 represents the eight task states and the
eight primitive motions of the dual-arm manipulator prepared for the given task,
while Figure 10 shows the designed task model using Petri nets in this chapter.

In the experiment, three pairs of electrodes (ch.1, 2, 3) were set at muscles of
the operator’s forearm, and two pairs of electrodes at muscles of the operator’s
upper arm (ch. 4, 5). Six motions are discriminated as a primitive hand motion
(hand opening, hand closing, hand closing and pronation, hand opening and
pronation, pronation, and supination). The control parameters in (13) and (15)
were setas (4,,4,,B,,8,) = (4.0, 4.0, 0.2, 0.3) for the right manipulator and (4.0,
4.0, 0.15, 0.3) for the left manipulator.

Figure 11 shows a typical scene of teleoperation of the dual-arm system for the
given cooperation task by subject A. In each task state, a left photo gives
operator’s motion while a right one shows the dual-arm robot’s motion teleoperated
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Table 2. Places and transitions

{a} Places

o | Standby £ | Grasping g tube

s | Grasping a bottle P | Grasping a tube and cup
P2 § Opening the cap £ | Pouring into 8 cup

# | Grasping a bottle and cup Px | Grasping acup
Ps | Pouring into & cup

(b) Transitions

& | Open #s | Grasp (left hand)

& | Grasp (right band) & | Grasp (right hand)

& | Grasp (Icft hand) % | Pronation and Grasp (lef) hand}
& | Grasp (left hand) A& | Open (right hand)

£ | Pronation (right hand)

Figure 10. Task model used in experiments
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by the subject. Figure 12 represents time profiles of the EMG signals measured
from the right and left arms, the estimated forces and discriminated motions of
the right and left arms, and the estimated task states using Petri nets, in order
from the top, during the operation shown in Figure 11. Since the motion
discrimination is performed well, it can be seen that the subject can operate the
proposed system properly by remote control using EMG signals to achieve the
given task.

Motion-Discrimination with AdaPtive Learning

The effectiveness of adaptive learning of neural networks for motion discrimi-
nation was examined using long-term (5-day) experiments. Subjects were asked
to perform the same six motions as the ones in the previous subsection at regular
intervals for 120 minutes; they executed almost 1,440 motions in this experiment.
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Figure 11. An example of the dual-arm control
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Figure 13. Effect of adaptive learning on the motion discrimination ability
by subject A who is right-handed
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The adaptive learning of neural networks was carried out by setting the number
of learning data at N = 120 and the learning thresholds H_ at 0.2. The subjects
were not informed of the discrimination result to exclude intentional changes of

EMG patterns during the experiment. Also, each element of the modifyin g vector
(Fos™**s Yypo=1,)Was set at 1.0.

Figure 13 shows the averages and standard deviations of discrimination rates by
subject A, in which the discrimination rates were calculated every 360 motions.
The discrimination rate without the online learning method decreased with time
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because of the variation of EMG patterns caused by fatigue and/or sweat. It
should be noted that the effectiveness of the online learning method can be
observed clearly from the discrimination rates of the non-dominant hand.

Figure 14 presents the discrimination rates of all subjects calculated every 120
motions for one day. The discrimination rates of all subjects are high at the
beginning of the experiment and tended to decrease as the operation continued.
However, it can be seen that the rates are maintained at a sufficiently high level
by using the online learning method.

Conclusion

This chapter has described a novel teleoperation technique using neural net-
works for a dual-arm manipulator system teleoperated by EMG signals. In the
developed system, an operator is not physically constrained by a control device
like the traditional master arm, so that he or she can control the manipulators by
using bioelectric signals as hoped. The system utilizes an event-driven task model
and non-contact impedance control to achieve skilled movements such as
coordinated tasks by dual arms, and high discrimination performance can be
attained by adapting the variation of EMG signals caused by individual differ-
ences, electrode locations, physical fatigue, sweat, and operator’s posture.

The experimental results demonstrated that coordinated tasks can be performed
with the proposed cybernetic control of the dual-arm system and that the high
accuracy of motion discrimination can be maintained by the proposed adaptive
learning method of neural networks even after the operator has controlled the
manipulators for a long period of time.

The teleoperation system using EMG signals has enough potential as an
operational interface to maneuver robotic manipulators by remote control
intuitively. In future research, we would like to establish a task model with
learning ability and feedback enhancement. We also plan to expand the devel-
oped dual-arm manipulator using EMG signals into a human-assisting system for
the handicapped, such as an amputee and the aged (Fukuda et al., 2003).
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