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Abstract: This paper proposes a new pattern classification method using probabilistic neural
networks based on a boosting approach. In this method, a log-linearized Gaussian mixture
network is used as a weak classifier. The method proposed automatically constructs a suitable
classification network from given data. Validity of the proposed method is shown by
discrimination results of artificial data and hand shape. The application is confirmed of the
proposed method to human interface controlling of home electric appliances using hand
shapes.
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1 INTRODUCTION

Several pattern classification algorithms have been

proposed for image discrimination, speech recogni-

tion, and data mining [1, 2]. In particular, neural

networks (NNs) have been demonstrated as a

promising classification tool, since their learning

ability allows them to find optimum non-linear

relationships between classes and feature patterns

from data sets [3, 4]. However, to use NNs effectively

as the classifiers for applications, several problems,

such as the choice of network structure, learning

convergence, and local minima, must be solved.

A probabilistic neural network (PNN), which

estimates the probability density function of pat-

terns, has been proved to be an efficient and

important method for pattern classification. In

particular, Tsuji et al. proposed a feedforward PNN,

a log-linearized Gaussian mixture network (LLGMN)

based on the Gaussian mixture model (GMM) and a

log-linear model [5]. The LLGMN has been success-

fully applied to pattern classification of bioelectric

signals, e.g. electromyograms [6] and electrocardio-

grams [5, 7], and has been used to develop human

interface applications, such as prosthetic devices

and electromyography (EMG)-based pointing de-

vices [8–10].

However, to estimate the LLGMN parameters, the

GMM number of each class must be fixed before-

hand. When the GMM number is fixed at an

unsuitable value, the LLGMN training cannot avoid

convergence to a local minimum for some initial

weights and training data. Therefore, better classifi-

cation performance requires estimation of an opti-

mum LLGMN structure. Several methods, such as

information criterion and the variational Bayes

approach, have been widely used as the criterion

for the structure of a model [11, 12]. In these

methods, a suitable learning model can be selected

based on discrimination accuracy, likelihood, and

model complexity. Although these methods select a

suitable model structure, all possible models must

be evaluated based on the criterion. Thus, it takes a

long time to estimate a suitable model structure.

There has also been growing interest in a boosting

approach for the construction of classification

systems with simple classifiers [13–15]. A general

boosting procedure can combine inaccurate and

simple classifiers to improve the discrimination

accuracy of a classification system. Therefore, this

approach eliminates the need for evaluation of

unnecessary models.
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This paper proposes a novel hierarchical classifi-

cation method that can automatically construct

classification models through a learning network.

In this method, the LLGMN is utilized in order to

create a simple and weak classifier. The proposed

method can estimate the number of LLGMNs

corresponding to the pattern complexity, according

to statistical information obtained from the training

data.

The next section provides the details of the

LLGMN structure and learning algorithm. Section 3

shows the proposed method for constructing a

suitable model using the boosting approach. The

results of computer simulation and pattern classifi-

cation experiments of biological signals are pre-

sented in section 4. Finally, the last section con-

cludes this paper.

2 LLGMN [5]

LLGMN is based on a log-linear model and a

Gaussian mixture model (GMM). It calculates a

posteriori probability for the training data. In this

method, LLGMN is utilized for partition at the non-

terminal node of the hierarchical tree. The structure

and learning algorithm of LLGMN are explained

below.

2.1 Structure of LLGMN

The structure of LLGMN is shown in Fig. 1. In order

to represent a normalized distribution correspond-

ing to each component of GMM as weight coeffi-

cients of NN, the input vector x( RD) is converted

into the modified input vector X as follows:

X~ 1, xT, x2
1, x1x2, . . . , x2

2, . . . , x2xD, . . . , x2
D

� �T ð1Þ

The first layer of LLGMN consists H 5 1 + D(D + 3)/2

units, which correspond to the dimension of the

input vector X, and the identity function is used for

the activation function of each unit. The outputs of

the first layer multiplied by weight w
k, mð Þ

h are

transmitted to the second layer, where w
K , MKð Þ

h 50,

and K and MK denote the number of classes

(patterns) and components belonging to class M

respectively. In this layer, LLGMN calculates a

posteriori probability of each Gaussian component

{k, m}. The unit k in the third layer integrates the

outputs of Mk units in the second layer

2ð ÞIk, m~
XH

k~1

1ð ÞOhw
k, mð Þ

h ð2Þ

2ð ÞOk, m~
exp 2ð ÞIk, m

� �
PK

k0~1

PMk0
m0~1 exp 2ð ÞIk0, m0

� � ð3Þ

The relationship between the input (3)Ik and the

output Ok in the third layer is

3ð ÞIk~
XMk

m~1

2ð ÞOk, m ð4Þ

3ð ÞOk~
3ð ÞIk ð5Þ

The output of the third layer (3)Ok corresponds to a

posteriori probability P(k|x) of class k given the input

vector, and the former can be used to evaluate the

ambiguity of a classification result.

This network has the ability of adaptive learning

for statistical properties of data. It can discriminate

data with complex distributed structure and in

comparison to the conventional method [16] using

normal distribution restricting the parameter.

3 PROPOSED PATTERN DISCRIMINATION WITH
THE BOOSTING APPROACH

In the proposed method, the LLGMNs are used in

order to create simple classifiers for the classification

of input vectors to produce binary splits. The

structure of each classifier is a hierarchical tree

using LLGMN as each non-terminal node. By

combining classifiers based on a boosting approach,

the network can discriminate complex data and

calculate a posteriori probability for the training

data. The structure of the network and the con-

structing algorithm are explained below.Fig. 1 The structure of LLGMN
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3.1 Structure of the network

Initially, the network consists of C classifiers, corre-

sponding to the number of classified classes. C is the

number of classes of training data. Each classifier

achieves a binary classification to calculate a poster-

iori probability of the cth class (c 5 1, 2, …, C). For

binary classification, the parameter of LLGMN K is set

as 2. L
qð Þ

c xð Þ c~1, . . . , C, q~1, . . . , Qcð Þ is a posteriori

probability calculated by the classifier, where Qc is the

number of classifiers used for the classification of the

cth class added based on the boosting approach.

Then, a posteriori probability Oc(x) is given as

Oc xð Þ~ max
q~1, ..., Qc

L qð Þ
c xð Þ

h i
ð6Þ

The structure of the proposed method is shown in

Fig. 2. The entropy of outputs is also calculated to

present the risk of misclassification. The entropy is

defined as

H xð Þ~{
XC

c~1

Oc xð Þlog Oc xð Þ ð7Þ

If the entropy H(x) is less than the discrimination

threshold Te, the class with the largest probability is

determined according to Bayes’ decision rule

Y xð Þ~arg max
c

Oc xð Þ ð8Þ

Otherwise, the determination is suspended.

3.2 Learning of the hierarchical classifier

The structure of the classifier is a hierarchical tree

using LLGMN. When the learning of the cth class is

performed, the training data are divided into two

groups, Gc and Gc̄, where Gc is a set obtained from

the training data belonging to class c and Gc̄ is the

complementary set of Gc. An example of the

constructed classifier is shown in Fig. 3.

Consider a training set {x(n), T(n)} (n 5 1, …, N),

where T nð Þ~ T
nð Þ

1 , T
nð Þ

2

� �
. If the input vector x(n)

belongs to class c, T
nð Þ

1 ~1 and T
nð Þ

2 ~0. An energy

function according to the minimum log-likelihood

training criterion can be derived as

E~
XN

n~1

J nð Þ~{
XN

n~1

X2

k~1

T
nð Þ

k log 3ð ÞOk ð9Þ

In the training process, modification of the LLGMN

weight Dw
k, mð Þ

h is defined as

Dw
k, mð Þ

h ~{g
XN

n~1

LJ nð Þ

Lw
k, mð Þ

h

ð10Þ

and

LJ nð Þ

Lw
k, mð Þ

h

~{
L

Lw
k, mð Þ

h

{
X2

k~1

T
nð Þ

k log 3ð ÞOk

 !

~ 2ð ÞOk, m{
2ð ÞOk, m

3ð ÞOk

T
nð Þ

k

� �
X

nð Þ
h

ð11Þ

where g . 0 is the learning rate.

LLGMNs are added to avoid the misclassification

of training data belonging to Gc̄. To evaluate the

misclassification accuracy of training data belonging

to Gc̄, an evaluation function is defined as

F 0~
D �cc, cð Þj j

G�ccj j
ð12Þ

If F9 is greater than the threshold Th9, more LLGMNs

are added hierarchically, and are trained using a

two-class set D(c, c) and D(c̄, c). Then, a posteriori

probability L
qð Þ

c xð Þ, which is calculated by the qth

Fig. 2 The structure of the proposed method Fig. 3 The structure of classifier
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classifier, is defined as

L qð Þ
c xð Þ~1{

XJq

j~1

P
j{1

j0~0

3ð ÞO
q, j0ð Þ

1 xð Þ
� � 3ð Þ

O
q, jð Þ

2 xð Þ
" #

ð13Þ

where Jq is the number of LLGMNs added to the qth

classifier, O
q, jð Þ

1 xð Þ is a posteriori probability calcu-

lated by the jth LLGMN in the qth classifier, and

O
q, 0ð Þ

1 xð Þ is set to 1. By combining the LLGMN

hierarchically to construct a network, the misclassi-

fication of data belonging to class c9 can be avoided.

3.3 Construction network

In the proposed method, the addition and learning

of the classifier is repeated for each class. A classifier

is initially trained to classify the training data into Gc

and Gc̄. If O1(x) . O2(x), it is considered that x is

classified into class c. Then, D(c, c̄) is the data set

belonging to Gc and is classified into Gc̄. An

evaluation function that considers the training

accuracy is defined as follows

F~
Gcj j{ D c, cð Þj j

Gcj j
ð14Þ

If F is greater than the threshold Th, a classifier is

added for accurate discrimination. To train a newly

added classifier, training data D(c, c̄) and Gc̄ are used.

Repeating the addition of classifiers until the

evaluation function is less than the threshold Th

allows model construction and classifier learning to

take place simultaneously.

Through the above training, the model construc-

tion and training of the classifier are performed

based on a boosting approach.

4 EXPERIMENTS

4.1 Simulation experiments

Firstly, pattern classification experiments on artifi-

cial data were conducted for evaluating the perfor-

mance of the proposed method. A two-dimensional

input space consisted of six classes (C 5 6), each

class consisting of five Gaussian sources. Examples

of the data are shown in Fig. 4. For each class, 200

samples were generated to train each LLGMN

(Mk 5 1, K 5 2), and then the trained network was

validated using test data (500 samples/class). The

values of the parameters Te, Th and Th9 were set as

0.8.

For the verification of the classification perfor-

mance of the proposed method, single LLGMN,

support vector machine (SVM) [2], and back propa-

gation neural networks (BPNN) [17] classifiers were

used for the comparison. BPNN had four layers (two

hidden layers), the units of which were set as 2, 10,

10, and 4. Also, an SVM having a second-order

polynomial kernel was used to perform a two-class

classification. By combining two-class classifiers,

multiclass classification using SVMs was achieved.

Figure 5 shows the classification results by the

proposed method and conventional methods for 10

independent trials (the initial weights and training

data were chosen at random). The results clearly

indicate that the proposed method achieved the best

classification rate among all the four methods. The

mean values and standard deviations of the number

of added LLGMNs for each class are shown in Fig. 6.

For estimating a simple distribution such as a class

six, a single LLGMN was used. On the other hand,

many LLGMNs were added to the network for the

estimation of complex distributions. These results

indicate that the proposed method can estimate

successfully the suitable class number of each class,

and has the advantage that no unnecessary LLGMNs

need to be added while evaluating the discrimina-

tion accuracy for determining the network structure.

4.2 Pattern classification of finger signal shapes

Next, motion classification experiments using finger-

shaped signals were conducted for examining the

performance of the proposed method. Three sub-

jects (A, B, and C) participated in the experiments.

4.2.1 Experimental conditions

The subjects were asked to perform 31 types of

motions (C 5 31). The motions are shown in Fig. 7.

Five shape signal channels (D 5 5) were rectified and

digitized using an analogue-to-digital (A/D) conver-

ter (sampling frequency of 167 Hz). Five shape

sensors (Measurand Corp.) were attached to each

finger of the right hand. These sensors are one-

degree-of-freedom (DOF) measuring devices. The

attached sensors are shown in Fig. 8. One end of

each sensor was fixed to the wrist of the subject and

the other ends were fixed to the corresponding tips

of fingers. Also, for measuring the angle of the finger,

the sensors were passed through the tubes that were

fitted to the fingers (see Fig. 8). In order to fix the

sensors to easy-to-use positions for each subject the

exact positions of sensors were not specified,
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because these sensors are utilized as user-friendly

interface devices in the next experiment. The

measured signals Sd(n) were normalized as follows

for obtaining a maximum value of 1

Nd nð Þ~
Sd nð Þ{Sst

d

Smax
d {Sst

d

ð15Þ

where Sst
d is the mean value of Sd(n) measured when

the hand is relaxed and Smax
d is the mean of the

maximum value of each channel. The normalized

Fig. 4 Artificial data used for discrimination experiments

Fig. 5 Classification results
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signals were compared with a prefixed threshold Md

to determine whether the subject changed the

motion of the hand. In addition, signals Nd(n)(d 5 1,

…, 5) are normalized to make the sum of all D

channels equal to 1 as follows

sd nð Þ~ Nd nð ÞPD
d~1 Nd nð Þ

ð16Þ

The values of the parameters Th and Th9 were set as

0.8 and Md was set as 0.5.

In this experiment, the shape signals measured

beforehand were selected using the present pro-

posed method.

4.2.2 Pattern classification results

The mean values and standard deviations of the

classification rates are shown in Fig. 9. BPNN had

four layers (two hidden layers), the units of which

were set as 5, 10, 10, and 32. Moreover, 32 SVMs were

used for the classification. As shown in the figure,

the classification results of the proposed method are

similar to those of SVM and single LLGMN for the

case of subjects A and B. In the case of subject C,

however, the classification results of other methods

degrade more than that of the proposed method.

Table 1 shows an example of the number of added

classifiers and LLGMNs in the network of subject C.

Here, it is inferred that a better classification is

achieved by adding the classifiers and LLGMNs.

Figure 10 shows the mean values and standard

deviations of the classification rates of each type of

motion for subject C. From this figure, it can be

clarified that the classification rate has improved

overall by the proposed method. For example,

Fig. 11 shows the mean values and standard devia-

tions of the signal patterns of motions 1 and 31. This

figure shows that the patterns of motion 1 are similar

to those of motion 31. As a result, a single LLGMN

cannot accurately identify the difference between

these patterns. However, the proposed method can

estimate the distribution of each type of motion

accurately using more than one LLGMN. For

example, the patterns of motions 8 and 9 overlap

(see Fig. 12); a more suitable structure can be

constructed using the proposed method by combin-

ing the LLGMNs. It is clear that by adding LLGMNs

to a network for the estimation of the distribution,

the proposed method can achieve a more accurate

classification than a single LLGMN.

4.3 Application on the human interface

An experiment was conducted to test the operation

of the proposed method. In this experiment, a Bio-

Remote system was used for controlling the electric

appliances. This system was manipulated according

to the user’s intention determined from the biologi-

cal signals.

Fig. 6 The number of added LLGMN

Fig. 7 The 31 pattern of hand shape

Fig. 8 Shape sensors attached to fingers
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In general, it is difficult to discriminate the user’s

intentions from the biological signals. Therefore, if

necessary, the user can manipulate various applica-

tions with residual functions that combine input

channels using this system. The proposed method

can discriminate various hand shapes from the

biological signals. An experiment was conducted,

using a healthy person as the subject, for verifying

the validity of the proposed method.

The function of the control system for electric

home appliances using hand shapes is shown in

Fig. 13 [19]. In this system, the discrimination results

are sent to the main unit, and the infrared signals

corresponding to the electric home appliances are

transmitted directly via the infrared light-emitting

diode (LED) of the main unit to the appliances. In

this experiment, operations corresponding to the

Fig. 9 Discrimination results for three subjects

Table 1 The number of added classifiers and LLGMNs

Class Classifiers LLGMNs

1 2 5
2 1 1
3 1 1
4 3 3
5 2 2
6 1 1
7 1 1
8 4 4
9 2 6

10 3 3
11 2 4
12 2 2
13 2 3
14 1 1
15 1 1
16 1 1
17 1 1
18 1 1
19 2 6
20 1 1
21 1 1
22 1 1
23 1 1
24 1 1
25 1 1
26 2 4
27 3 4
28 1 1
29 1 1
30 1 1
31 2 7

Fig. 10 Discrimination results of finger motion for
subject C

Pattern discrimination method with a boosting approach 707
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user’s motions are executed until the same discri-

mination occurs 150 times.

Examples of the operations corresponding to

discriminated motion are shown in Table 2 [19]. In

a usual Bio-Remote, various operations can be

performed by repeating a command selection.

However, from this figure, it can be inferred that

each operation corresponds to a single hand shape

motion. In this experiment, the shape signals

measured beforehand were identified by the pro-

posed method.

An example of the subject’s operation is shown in

Fig. 14. In this figure, five channels of the normal-

ized signals, discrimination results, and control

commands are plotted. The grey areas indicate that

the Bio-Remote is not operated.

From these experimental results, it can be inferred

that the subject could operate the home electric

appliances by changing the shape of his or her

fingers. It should be noted that there was no

malfunction and that the home electric appliances

could be operated according to the subject’s intent,

confirming that using the proposed system, the

subject can control various electric appliances

simply by moving his or her fingers.

5 CONCLUSION

In this paper, a novel hierarchical probabilistic

neural network based on a boosting approach is

proposed. In the proposed method, the structure of

the classification network is constructed by adding

LLGMNs as classifiers to estimate the distribution of

training data. By evaluating the structure based on

classification accuracy, the addition of unnecessary

LLGMNs can be avoided.

Experimental results on the artificial data set and

hand shape signals prove the feasibility of the

proposed method. Comparison experiments of the

proposed method and single LLGMN were con-

ducted, and the high classification performance of

the proposed method was confirmed. It has been

shown that the proposed method is suitable for

classification of complex data, since the required

Fig. 11 Rader charts of the hand gesture pattern of
gesture 1 and gesture 31 for subject C. The line
indicates the mean value of each channel

Fig. 12 Rader charts of the hand gesture pattern of
gesture 8 and gesture 9 for subject C. The line
indicates the mean value of each channel

Fig. 13 Operation of home electric appliances using
discrimination results of hand shape

Table 2 Example of command allocation for home
electric appliances

Motion number Object Command

1 Light On
2 Off
3 TV Switch
4 CH up
5 CH down
6 CD player Power on/off
7 Play
8 Stop
9 Volume up

10 Volume down
A A A
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classifiers will automatically be added in the network

in order to perform an accurate classification.

Furthermore, assignment of the hand shapes directly

to the operation command of a home electric

appliance confirmed the feasibility of direct opera-

tion of home electric appliances using the Bio-

Remote.

In addition to establishing the classification ability

of the proposed PNNs, future study must focus on

various theoretical aspects. The proposed method

should also be applied to other data.
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APPENDIX

Notation

C number of classes

D length of input vector

D(c, c9) data set belonging to class c and

classified into class c9

E energy function for training process

F evaluation function for boosting

F9 evaluation function for classifier

Gc set of data belonging to class c

Gc̄ complementary set of Gc

H number of units of the first layer

H(x) entropy
(2)Ik,m input of the second layer
(3)Ik input of the third layer

Jq number of LLGMN in qth classifier

J(n) log-likelihood

K number of units of the third layer

L
qð Þ

c xð Þ output of classifier

Md threshold

Mk number of components

Nd(n) normalized signal

Oc(x) output of proposed network
(1)Ok,m output of the first layer
(2)Ok,m output of the second layer
(3)Ok output of the third layer
3ð ÞO

q, jð Þ
k output of jth LLGMN in qth classifier

P(k|x) a posteriori probability of k

Qc number of classifiers

sd(n) processed signal to make the sum of

all channels equal to 1

Sd(n) measured signals

Smax
d mean of the maximum value of each

channel

Sst
d mean value of Sd(n)

Te threshold for discrimination

T(n) outputs of training data

Th threshold for F

Th9 threshold for F9

w
k, mð Þ

h weight of LLGMN

xi element of input vector x

x input vector of LLGMN

x(n) inputs of training data

X converted input vector of LLGMN

X(n) input vector converted from x(n)

Y(x) determined class

Dw
k, mð Þ

h modification of the weight

g learning rate
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