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This paper presents a neural time-base generator �TBG� that can generate a family of neu-
ral control signals with a controllable finite duration and bell-shaped velocity profile.
Then, a bio-mimetic trajectory generation method using the neural TBG model is ex-
plained. Using the proposed model, the generation ability of human-like trajectories is
examined through comparisons between computer simulations and human arm trajec-
tories during reaching movements according to the curvature of constrained
trajectories. © 2005 Wiley Periodicals, Inc.

. INTRODUCTION

e as individual human beings control our postures

as kicking and reaching. A great variety of skillful
motions could be generated through serial and/or
parallel combinations of rhythmic and one-shot mo-
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nd movements according to tasks and environ- tions. Many researches aiming at realizing these two
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ents, and show a great variety of skillful motions
onsciously or unconsciously. The movements dem-
nstrated by the biological system appear to be
oughly divided into rhythmic motions, such as
alking and swimming, and one-shot motions, such
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rimitive motion patterns have been actively con-
ucted in both neurological and computational sci-
nces.

Rhythmic behaviors are believed to be controlled
y neural circuits located in the spinal cord or brain-
tem so-called Central Pattern Generator �CPG� that
enerates periodic neural motor commands.1 The
quations for the rhythmic pattern generator can be
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To the contrary, we have developed a trajectory
generation approach using a time base generator
�TBG� that generates a family of scalar signals with a
controllable finite duration and bell-shaped velocity
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xpressed by the half-centered oscillator model,2 and
atsuoka formulated such neurological behaviors
ith a set of leaky integrators;3

Ta�̇i = − �i − bi�i + si − w��j�+, �1�

Tb�̇i = − �i + ��i�+, �2�

here �i is the state variable for the i-th individual
euron; bi the parameter that determines the steady-
tate firing rate for a constant input; si the impulse
ate of the tonic or slowly varying input; �i the vari-
ble that represents the degree of fatigue or adapta-
ion in the neuron; Ta and Tb time constants for the
utput �i and the adaptation �i, respectively; and �·�+

threshold function that sets negative values to 0
hile not affecting positive values. He also showed

hat mutual inhibition networks consisting of a few
eurons as shown in Figure 1 can generate a variety
f neural rhythmic signals under the specified con-
ition of the parameters. The CPG model by Mat-
uoka has been widely utilized to regenerate rhyth-
ic movements of animals on the basis of

hysiologically acquired evidences about its neural
tructure.5–7 Recently, a biological controller inspired
y the CPG model has been studied to make robots
erform human-like rhythmic movements.4–10

On the other hand, there has been a well-known
iological finding that a human usually moves his
and along a roughly straight path with a bell-shaped
elocity profile between the specified two points.11 As
n explanation for such a human motor control
echanism underlining one-shot movements, many

omputational models have been proposed, such as a
inimum jerk model,12,13 a minimum torque-change
odel,14 a minimum variance model,15 and a VITE
odel.16 The first to third models argue that the un-

erlying mechanism is feedforward control with a
riterion function, while the other considers it as
eedback control by using external information de-
ected from senses. All of these models can generate
and trajectories during free movements in a roughly
ood agreement with experimental data.

Figure 1. A mutual inhibition network of a CPG.

rofile.17–24 Our model is in the middle of the feed-

orward and feedback models: a human-like hand
rajectory appears by synchronizing a translational
nd a rotational velocity of the hand with a neural
ime-base signal generated by a neuron network. In
his paper, the neuron dynamics for outputting a neu-
al time-base signal is formulated in the framework of
he TBG model, and human arm movements con-
trained by a circular trajectory are focused on to dis-
uss the effectiveness of the bio-mimetic control
echanism using the neural TBG. If such control
echanisms can be adopted into robot motion con-

rol, robots will be expected to be capable of more
killful motions, and can teach suitable human move-
ents for patients with disabled motor functions.

This paper is organized as follows. Section 2 ex-
lains the concept of a neural TBG model, and pre-
ents a bio-mimetic trajectory generation method us-
ng neural TBG signals. Section 3 describes an
xperimental apparatus for constrained human arm
ovements with normal healthy subjects and shows
set of experimental results. In Section 4, computer

imulations using the proposed trajectory generation
ethod are carried out to demonstrate human-like

and trajectories with comparison of the experimen-
al data.

. A NEURAL TIME-BASE GENERATOR

human acquires various kinds of skillful motions
ccording to circumstances through experiences or
ractices in his/her lifetime, and we can visibly find
uch a skill acquisition process in the growth of a hu-
an infant.

For example, the normal infant has the capability
f realizing smooth reaching movements with a bell-
haped velocity profile by the end of the fifth
onth.25,26 Prior to that, he/she generates snaky spa-

ial trajectories with a pulsating velocity profile that
eems to be a combination of one-shot movements
ith a bell-shaped velocity profile as shown in Figure

. Considering this fact, it is supposed that the control
echanism of human reaching movements involves
kind of CPG that is restructured to generate one-

hot neural signals with a bell-shaped profile in the
pinal cord or the brainstem.

The present paper defines such special CPG for



o
a
v

2

A
a
r
s
s
a
u
t
t
l

w
n
i
p

t
t
w
s
d
s
t

2

T
h
r
t

=
t
g
�

F
d
2

F
e

F
o

F
g

Tanaka et al.: Bio-mimetic Trajectory Generation Using a Neural Time-Base Generator • 627
ne-shot movements as a neural time-base generator,
nd formulates its dynamics from the neurological
iewpoint in this section.

.1. Neuron Model

neuron is a nerve cell that outputs a nerve signal
ccording to the received signals from other neu-
ons, and is usually regarded as a multiple-input-
ingle-output system. In this paper, we propose a
pecific model of neurons consisting of a multiplier,
n integrator, and a power function as shown in Fig-
re 3. The model outputs a signal � converted from

he integrated signal of the product of inputs with
he power function ��·�, and its dynamics is formu-
ated as

�̇i = �
j=1

n

wj�j, �3�

igure 2. An example of the spatio-temporal trajectory
uring reaching movements of an infant at 4 months �ref.
5�.

igure 3. A schematic illustration of the proposed neuron
lement.
�i = �i��i� � �i
�i, �4�

here �i represents a membrance potential of the
euron body; wj a weight coefficient determining fir-

ng rate for each input �j; and �i a time constant
arameter under 0��i�1.

Figure 4 shows responses of the single neuron to
he step input from another neuron depending on
he parameter �i=0.25,0.5,0.75,0.95, where n=1,

1=1, and �i�0�=0. It can be seen that the output
ignal tends to rapidly close to 1 until 1 �s� as �i
ecreases, while slowly increases after that. The re-
ponse of the neuron changes according to values of
he parameter �i.

.2. Neural TBG

he present paper proposes a simple reciprocal in-
ibitation network consisting of a couple of the neu-
ons, as shown in Figure 5, which is called a neural
ime-base generator �neural TBG� model.

Let us consider the condition that �1�0�+�2�0�
1 under the adequate normalization at the initial

ime. Dynamic behaviors of each neuron can be
iven as follows:
Neuron 1�

igure 4. Step responses of the single neuron depending
n �.

igure 5. Neuron network of a neural time base
enerator.
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�̇1 = ��1�− �2� = − ��1
1�2

2, �6�

Neuron 2�

�2 = ��2, �7�

�̇2 = − ��2�− �1� = ��1
�1�2

�2. �8�

rom �6� and �8�, we have

�̇1 = − �̇2 �9�

nd thus yields

�1�t� + �2�t� = 1. �10�

ubstituting �10� into �6�, dynamics of the state �1
an be expressed as

�̇1 = − ��1
�1�1 − �1��2, �11�

here � is regarded as a parameter to determine
oth the speed and the finite time of a generating
eural profile. This dynamics was originally defined
or a control model of human arm movements with
bell-shaped velocity profile.17

There exist two singular points of the dynamic
ystem; that is, �1=0 and 1. It can be seen that the
ingular points are Terminal attractor.27 Zak showed
hat a system with a terminal attractor always con-
erges to the equilibrium point in a finite time tf. The
ufficient condition to have the terminal attractor is
hat the Lipschitz condition of ordinary differential
quations is violated at the equilibrium point.

In the proposed neural TBG, the convergence
ime tf is calculated from �1�0�=1−	 to �1�tf� as24

tf = �
0

tf

dt =

�1 − �1�
�1 − �2�
�
„2 − ��1 + �2�…

�12�

here 	 is a very small positive value, and 
�·� the
amma function. Thus, the system converges to the
quilibrium point �1�tf� in the finite time tf when � in
12� is chosen as
� =

�1 − �1�
�1 − �2�
tf
„2 − ��1 + �2�…

. �13�

his means that the equilibrium point �1�tf� is a ter-
inal attractor that does not satisfy the Lipschitz

ondition: ��̇1/�1�→�.27

The velocity signal �̇1�t� has a bell-shaped profile
ith the maximum absolute value, ��̇1�tf/2��=�4−�,

t t= tf/2 under the condition with �1=�2=�. With
egard to the acceleration profile, the following form
an be derived as

	d2�1

dt2 	 = ��2
�1 − ��1 + �2��1��1
2�1−1�1 − �1�2�2−1�

�14�

nd it can be seen that the condition for the existence
f a bounded acceleration at the equilibrium point is
iven by the inequality 1/2��i�1.22–24

Figure 6 shows time histories of �1 and �̇1 ac-
ording to the different specified convergence time
f=1.0,3.0,5.0 �s� under the parameter ��1 ,�2�
�0.5,0.5�. While Figure 7 shows time histories of �

igure 6. Time histories of �1 and �̇1 depending on the
pecified convergence time tf.
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nd �̇ using the parameters ��1 ,�2�= �0.75,0.5�, �0.75,
.75�, and �0.5, 0.75� with the convergence time
f=2.5 �s�. It can be seen that dynamics of the neural
BG signal can be regulated by changing the param-
ters tf and �i, so that the asymmetric profile as well
s the symmetric profile can be generated with a
ontrollable finite duration.

In summary, by selecting two parameters of the
eural TBG �tf and ��, a family of time-varying sig-
als ��t� can be generated. In the next section, �1�t� is
tilized to generate biomimetic trajectories. It should
e noted that �2�t� can also be utilized when the tra-

ectories with positive velocities are necessary.

.3. Bio-mimetic Controller Using the Neural TBG

igure 8 shows a block diagram of the proposed con-
rol mechanism using a neural TBG signal �, where

is the current position of the human hand and Xd
he target point. This subsection explains a neural
BG model for a human-like trajectory generation
ethod.

The bio-mimetic trajectory generation method
or robots is based on the time scale transformation

ith the neural TBG in the framework of the artifi-

igure 7. Time histories of �1 and �̇1 depending on the
djustable parameter �i.
ial potential field approach �APFA�.21–24 The block
iagram of the controlled robot can then be ex-
ressed by exchanging the pictorial shape of the hu-
an arm in Figure 8 with that of a robotic arm.

Generally, kinematic behaviors of a robot can be
escribed as

Ẋ = G�X�U �15�

here U�Rn is the input motor command vector of
robot; and it is assumed that det G�x��0. The re-

ationship between actual time t and virtual time s is
efined using the neural TBG signal ��t� as

a�t� =
ds
dt

= − p
�̇

�
�16�

here a positive constant p is for regulating the de-
ree of time compression; and a continuous function
�t� is a kind of time scale function.28 Note that the
omputational feasibility of the designed function
�t� is lost at tf since the denominator of a�t� becomes
ero ��→0�. For the practical purpose, this problem
an be avoided by introducing a very small positive
onstant parameter c into a�t� as

a�t� = − p
�̇

� + c
. �17�

o simplify the discussion, theoretical expansion in
he following part of this paper is carried out under
he condition with c=0. From �11� and �16�, virtual
ime s can be derived as follows:

s = �
0

t

a�t�dt = − p ln ��t� . �18�

t is obvious that virtual time s in �18� can be con-
rolled by �, and never goes backward against actual
ime t. Thus, the system given in �15� can be rewrit-

igure 8. Block diagram of the TBG model for human
rm reaching movements �refs. 18–24�.
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here

Us =
1

a�t�
U . �20�

On the other hand, the APFA sets a potential
unction V�X� which is minimized at a goal position

d set in the task space. By applying a virtual attrac-
ive force to the goal position, the controlled robot
an reach the target in infinite time. An example of
uch a feedback controller Us can be designed as

Us = − G−1�X�� �V
�X


T

. �21�

y using inverse time-scaling from virtual time s to
ctual time t for the feedback controller Us in virtual
ime s, a feedback control law U in actual time t is
erived as

U = − a�t�G−1�X�� �V
�X


T

. �22�

he system given in �15� converges the equilibrium
oint at the specified time tf by the derived control-

er U in the actual time scale. That is, it is able to
enerate a spatio-temporal trajectory from the initial
oint X0 to the target point Xd with the specified
onvergent time tf.

.4. Examples

and trajectories during human arm reaching
ovements in the 2D free space is examined using

he proposed bio-mimetic trajectory generation
ethod. A bio-mimetic controller for generating

uman-like trajectories during free movements can
e designed as

U = − p
�̇

�
�Xd − X� �23�

ith the potential function V=1/2 �Xd−X�T�Xd−X�
nder the condition that G�X�= I�R2. With this con-

roller, the translational velocity during reaching
ovements vX is given by
vX = �Ẋ� = �p��1−1�1 − ���2�Xd − X� . �24�

t should be noted that the controller given in �23�
an express the dispersion of traveling duration as
ell as the asymmetric property of velocity profiles

y regulating the parameters tf, �1, and �2.
On the other hand, Figure 9 shows the experi-

ental apparatus for the measurement of reaching
ovements, where a stereo camera system �Quick
AG, Ouyou Keisoku Kenkyusyo Inc.� is employed

hat can detect a 3D position of a color marker at-
ached at a measurement point �maximum of 8
oints� from two 2D image sequences taken by two
CD cameras in real time �sampling rate: 60 �Hz��.

n the experiments, a human subject was asked to
ove his right hand from the specified point to an-

ther.
Figure 10�a� shows examples of the experimental

esults for the subject, where the horizontal axis is
he time and the vertical axis the translational veloc-
ty of hand movements. Note that all of the velocity
rofiles are single-peaked but there are some disper-
ions on the asymmetry of profiles. Accordingly, it
hould be modeled the control mechanism of reach-
ng movements with consideration of such disper-
ions.

Figure 10�b� shows the human-like trajectories
orresponding to the measured results in Figure
0�a�, in which the values of �i and tf were set em-
irically under p=1. It can be found that the pro-
osed method can be successfully expressed human-

ike trajectories including the dispersions observed
n the empirical results by regulating the parameters
f the neural TBG.

Summing up, the bio-mimetic approach using
eural TBG can generate human-like trajectories
uring free movements including dispersion of
ovement time as well as asymmetric behavior of

Figure 9. Experimental setup.
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and velocity. However, most of human movements
n daily activities are constrained from task environ-

ents during operational motion. The next section
iscusses a bio-mimetic trajectory generation in such
onstrained movements by a circular guide.

. HUMAN HAND MOVEMENTS WITH
ONSTRAINTS

.1. Experimental Apparatus

igure 11 illustrates an experimental system to ex-
mine human arm movements constrained by a cir-
ular trajectory. The system is composed of an
mpedance-controlled robot for providing virtual
onstraints to human hand movements, a computer
or robot control and signal processing, and a dis-
lay which indicates experimental results to a hu-
an subject. The robot is composed of two linear
otor tables with one degree of freedom �Nihon

hompson Corp., maximum force ±10 �kg f�; and
ihon Seikou Corp., maximum force ±40 �kg f��,
hich are placed orthogonally in order to realize the

wo-dimensional motion. A hand force generated by
he subject is measured by a six-axis force/torque

igure 10. Comparison results of the simulated velocity
rofiles using a bio-mimetic controller with the human
enerated velocities.
ensor �BL Autotec Co. Ltd., resolution: force x and y
xes, 0.05 �N�; z axis, 0.15 �N�; torque, 0.003 �Nm��
ttached on the handle of the robot. Also, the handle
osition is measured by an encoder built in the lin-
ar motor table �resolution: Nihon Tomson Corp.,
.0 �
m�; and Nihon Seikou Corp., 1.0 �
m��.

Figure 12 shows a control block diagram of the
eveloped system to provide a virtual constrained

rajectory with a constant curvature. The hand force
ext= �fx , fy�T�R2 in the Cartesian system �c is trans-
ormed to the human hand force Fp= �� , fr�T�R2 ex-
ressed in the polar system �p by

Fp = �r cos��

2
− �
 r sin��

2
− �


− sin��

2
− �
 cos��

2
− �
 �Fext �25�

here r is the radius of a circular constrained trajec-
ory. The origin of the polar system �p is set at the
otational center determined by the initial and target
oints with the specified radius r. Also, � is defined
s the rotational angle from the x axis; � the torque
quivalent to the tangential element of the hand

Figure 11. An overview of the experimental system.

igure 12. Block diagram of the impedance controlled
ystem for virtual constrained movements.
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orce Fext for the trajectory; and fr the normal element
f Fext �see Figure 13�. The impedance-control part
utputs a virtual target position of the robot handle

n the polar system �p, Xp= �rp ,�p�T�R2, from the
and force Fp by the following dynamics of the

mpedance-controlled robot:

MẌp + BẊp + KXp = Fp �26�

here M=diag�M� ,Mr�, B=diag�B� ,Br�, K
diag�K� ,Kr��R2�2 are the diagonal matrices of ro-
ot inertia, viscosity, and stiffness properties, respec-
ively. The first element of each matrix is an imped-
nce parameter for the tangential direction of the
rajectory while the second one is for the normal di-
ection. The tracking part works to make the robot
andle follow to the virtual target Xv
�rp cos �p ,rp sin �p�T�R2 expressed in the Cartesian

ystem �c. By installing the above control algorithm
nto the developed system, a various kind of virtual
onstrained trajectories can be produced.

.2. Experimental Method

human subject is asked to move the handle of an
mpedance-controlled robot by his right upper arm
rom the specified two points. A set of experiments

as carried out for five normal subjects �male uni-
ersity students aged 22–24�.

Figure 14 shows the experimental conditions de-
igned by referring to the literature,14 in which
oints T1, T2, …, T6 represent the specified initial/

arget points of human arm movements and the ori-
in of the Cartesian coordinate �c agrees with the
houlder point of a human subject. Spatio-temporal
rajectories between the specified two points were

easured for the different curvatures �=1/r

Figure 13. Coordinate transformation of hand force.
0.0, ±2.0, ±4.0 �m−1� for seven different paths,
ath-a, path-b, …, path-g, described as in Figure 14.
he curvature for path-c was setting as �
0.0, ±2 �m−1� because of the motion range of the
xperimental system.

Robot impedance properties of the tangential di-
ection to hand motion were set as �M� ,B� ,K��
�1.5 r2 �Kg m2� ,30 r2 �Ns m� ,0 �Nm��, while ones
f the normal direction as �Mr ,Br ,Kr�
�100 �Kg� ,2000 �Ns/m� ,10000 �N/m�� to provide a
irtual constraint for the subject’s hand movements.

.3. Experimental Results

igures 15 and 16 show the typical results of the
patio-temporal trajectories generated by Subject A
nder the conditions of path-b and path-f, respec-

ively, where the hand velocity profiles of four trials
re plotted in the panels �b�–�f� depending on the
pecified curvature. The hand velocity profile has a
ingle-peak for the straight constrained trajectory
�=0�, while the velocity profile becomes asymmet-
ic as the curvature of trajectories increases. Note
hat a double-peaked profile does not always appear
ven when the curvature is set at the maximum cur-
ature ����=4 �m−1�� within the experimental condi-
ions in this paper.

Table I shows the overall results for all subjects
escribing the type of velocity profiles according to

he specified conditions. It can be found that the sub-
ects generated a double-peaked velocity profile un-
er the conditions of path-a, path-b, and path-g with

igure 14. Experimental conditions of the specified initial
nd target points.
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large curvature in which the constrained trajectory
as across the front of their bodies. Accordingly, the

ranslational velocity of hand movements is affected
y both the curvature of spatial trajectories and the
elative position between initial and target points.

. BIO-MIMETIC TRAJECTORY GENERATION
OR ROBOTS

.1. Bio-mimetic Trajectories for Rehabilitation
obots

ecently, a number of training and rehabilitation
ystems using robots have been developed. Espe-
ially, to support joint motion exercises for preven-
ion and improvement of joint contraction and

uscle atrophy, many kinds of a continuous-
assive-motion �CPM� device, which moves joints of
patient passively, have been developed.29–32 How-

ver, in these previous training systems, it is difficult
o offer efficient training for realizing a smooth

igure 15. Generated trajectories and tangential veloci-
ies of the end-point �path-b: T3→T6�.
otion like a healthy person produces because time-
elated characteristics of motion such as a velocity
rofile and a movement time are not used as a train-

ng goal.
On the other hand, we have proposed a bio-

imetic rehabilitation robot for reaching movements
y using the TBG model with the robot control sys-
em as shown in Figure 17.22 The training system is
onstructed in such a way that a trainee operates an
mpedance-controlled robotic device during training

hile the robot evaluates and assists the trainee’s
ovements with the assisting force Faid on the basis

f the given human-like trajectory Xr that is gener-
ted using the TBG. Accordinly, it is expected that
he training considering normal dynamic behaviors
f human movements can be provided to a trainee.

The rest of this section discusses human-like tra-
ectories constrained by a circular guide to transform
he developed experimental system shown in Figure
1 into a bio-mimetic rehabilitation robot for training
uman motor control abilities during constrained
ovements.

igure 16. Generated trajectories and tangential veloci-
ies of the end-point �path-f: T4→T6�.
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Table I. Type of the velocity profiles depending on the experimental conditions.

� Subject A Subject B Subject C Subject D Subject E

Path-a D D S D D

F
r
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.2. Trajectory Generation by a Bio-mimetic
ontroller

o utilize the constructed control system as shown in
igure 12, a bio-mimetic controller is designed in the
olar system �p in this paper. Then, to express the

amily of curved trajectories with a double-peak ve-
ocity profile, a virtual via-point Xvp�R2 is set on
he task space as a time-varying equilibrium point of

T3→T5
−4
−2 S D

0 S S
2 S S
4 S S

Path-b
T3→T6

−4 D D
−2 S D/S

0 S S
2 S S
4 D D/S

Path-c
T2→T6

−2 S S
0 S S
2 S S

Path-d
T1→T3

−4 S S
−2 S S

0 S S
2 S S
4 S S

Path-e
T4→T1

−4 S S
−2 S S

0 S S
2 S S
4 S S

Path-f
T4→T6

−4 S S
−2 S S

0 S S
2 S S
4 S S

Path-g
T5→T3

−4 D/S S
−2 S S

0 S S
2 S S
4 D D/S

D: Double peak, S: Single peak.

igure 17. Block diagram of a bio-mimetic rehabilitation
obot �ref. 22�.
he potential field as shown in Figure 18. The virtual
ia-point starts moving at time ta and reaches the
nal point at time tb by synchronizing the dynamics
f �v with a neural TBG signal �v.

The bio-mimetic controller using the neural
BG, v��R2, can be designed as

S S S
S S S
S S S
S D/S S
S D/S D
S D/S D/S
S S S
S S S
S S S
S D/S D
S S S
S S S
S S S
S S S
S S S
S S S
S D/S S
S S S
S S S
S S S
S S S
S S S
S S S
S S S
S S S
S S S
S S S
S D/S D/S
S S S
S S S
S S S
S D D/S

Figure 18. Virtual via-point used in the simulations.
t
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2

ith the following potential function V� in the polar
ystem �p

V� =
k�

2
��d − ��2 �28�

here �d is the angle of the target point Xd in the
olar system.

When the virtual via-point is not set at the task
pace, the time derivative of V� yields

V̇� = � �V�

��

T �v��

r
= pV�

�̇

�
� 0. �29�

s V̇� is always negative except at the equilibrium
oint, the system of the end-point in the actual time
cale is asymptotically stable. Moreover, this differ-
ntial equation given in �29� can be readily solved as
ollows:

V� = V��0��p. �30�

t can be seen that the potential function V� is “syn-
hronized” with the neural TBG signal because V� is
roportional to the pth power of �. Accordingly, the
nd-point is bound to reach the target position Xd
rom the initial position X0 just at t= tf by using the
ontroller v� in �27�.

When the virtual point Xvp is set in the task
pace, the potential filed by V� varies according to
he dynamic behaviors of Xvp. As far as Xvp con-
erges to the target point Xd before the specified
ime tf under V��0, it can be done the same discus-
ion with the case when no virtual via-point is set:
hat is, the end-point is bound to reach the target
osition just at t= tf.

Figure 19 shows examples of the simulated
uman-like trajectories in the case of path-b corre-
ponding to the experimental results presented in
igure 9, in which a white circle represents the initial
osition of a virtual via-point Xvp and a dotted line

n the panels �c�, �e�, and �f� shows the velocity with-
ut setting a virtual via-point. The parameters for
he designed controller and the virtual via-point

ere determined to realize a suitable velocity profile
ccording to the curved trajectories under the condi-
ion with p=1.0 and k�=1.0 as shown in Table II. It
an be seen that the simulated trajectories have the
imilar characteristics to the observed human trajec-
ories: the velocity profile tends to be double-peaked
s the curvature increases. However, without setting
he via-point, the velocity profiles are always single-
eaked with difference from the empirical results by

he human subjects. It supposes that a human uti-
izes such a virtual via-point to avoid generating
urplus hand force toward the constrained direction.

Consequently, the designed controller using the
eural TBG can generate human-like trajectories
ith the kinematic features of human arm move-
ents constrained by a circular trajectory by utiliz-

ng a virtual via-point.

. CONCLUSION

he present paper has presented the neural TBG
odel outputting a neural signal with bell-shaped

igure 19. Simulated trajectories and tangential velocities
f the end-point �path-b: T3→T6�.
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Table II. Specified parameters for the designed controller and the virtual via-point.

Curvature
�

Controller Virtual via-point

t �1 �2 ta tb �1 �2 �
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rofile and the bio-mimetic trajectory generation
ethod for generating human-like trajectories. Then,

uman arm reaching movements constrained by a
irtual circular guide were examined with the normal
ubjects according to the position of initial and target
oints and the curvature of guides. The experimental
esults demonstrated that the translation velocity
rofile of the human hand tends to be double-peaked
hen the circular path with large curvatures closes to

he human body. By applying the TBG based method
ith a virtual via-point, the spatio-temporal trajecto-

ies of the observed human reaching movements
ave been reproduced successfully.

Future research will be directed to investigate the
nfluences of via-points on constrained human arm

ovements with consideration of environmental dy-
amics through a set of experimental and computa-

ional tests. Also, we plan to develop a design method
f an optimal trajectory for guiding human move-
ents operating a robotic system.
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