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Abstract. The dynamic characteristics of human upper
extremities are usually expressed by mechanical imped-
ance. Although many studies have discussed human
impedance characteristics, there are no reports on con-
trol abilities of task-related impedance in skilled human
hand movements.

This paper proposes a virtual sports system using a vir-
tual reality technique to examine human movements. The
differences in movements between skilled and unskilled
subjects are investigated through a series of experiments.
Then, the human impedance of a skilled player is esti-
mated and analyzed in the preliminary phase of motion.

1 Introduction

Humans perform a variety of skillful movements by
adjusting dynamic characteristics of their musculoskele-
tal system in motion. For example, a professional tennis
player can serve an extraordinarily fast ball through an
arc-shaped movement of his arm. The player has not only
strong muscle power but also the ability to control his
arm dynamics. In general, such dynamics of a hand–arm
system have often been discussed in relation to the opera-
tional task space by using mechanical impedance param-
eters, i.e., hand stiffness, hand viscosity, and hand inertia.

Many experimental studies on human arm impedance
have been reported. For example, Mussa-Ivaldi et al.
(1985) pioneered the measurement of human hand imped-
ance and examined hand stiffness in a stable arm posture.
It was reported that hand stiffness depends greatly on
the arm posture and that humans could change at will
the magnitude of stiffness but not its direction. Also,
Dolan et al. (1993) and Tsuji et al. (1994, 1995) inves-
tigated not only hand stiffness but also viscosity and
inertia and verified a qualitative analogy between hand
stiffness and viscosity. Tsuji et al. (1996) found that hand
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viscoelastic characteristics change in proportion to the
muscle contraction level. Gomi and Kawato (1997) then
examined hand impedance in reaching movements and
demonstrated that hand stiffness in motion changes activ-
ity more than once in a stable arm posture.

Human impedance has also been used for kinesitherapy
in rehabilitation (Hogan et al. 1993; Krebs et al. 1996;
Tsuji et al. 1999). Hogan et al. (1993) and Krebs et al.
(1996), for example, developed a new training system using
the impedance-controlled robot with parallel mechanism.
However, they did not train the trainee’s ability to control
impedance itself. Tsuji et al. (1999) proposed the imped-
ance training to improve a trainee’s ability to regulate
voluntary impedance. The trainee is asked to adjust his
hand impedance in such a way that the hand impedance,
which can be measured during the training online, agrees
with the target impedance. They verified that the ability to
regulate impedance can be improved effectively by a pro-
totype training system based on the impedance training
method. They also described the primary factors for the
effective regulation of impedance parameters, i.e., muscle
contraction level for stiffness, motion direction for viscos-
ity, and arm posture for inertia. However, the developed
training system can be applied only to static motions with
a maintained posture, not to skill training associated with
dynamic motion.

Sports exercises are good potential examples of the
impedance training of dynamic movements. There are
difficulties, however, in measuring force and positional
information in human motion. Also, in the impedance
training method, it is necessary to apply an external
disturbance to the trainee’s hand movements during
dynamic movements in order to estimate the human hand
impedance. Such operations may be extremely difficult
to conduct while the sports exercises are taking place.
Although some reports have attempted to estimate human
impedance parameters in dynamic motion from EMG sig-
nals (Tsuji et al. 1996; Tsuji and Kaneko 1996; Osu and
Gomi 1999), hand impedance cannot be expected to be
measured accurately in motion because human impedance
is influenced significantly by the conditions of the muscu-
loskeletal system depending on the contraction intensity,
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arrangement of various muscles, and sensitivity of the
spinal reflex.

The present paper develops a virtual sports system as a
first step toward realizing impedance training in dynamic
motion by utilizing a virtual reality technique and an
impedance-controlled robot. It should be noted that the
main purpose of this paper is not to realize “real sports”
in the virtual reality environment. The most important
feature of the proposed virtual sports system is that the
system makes it possible to apply an external disturbance
to a trainee’s motion. The measurement of human hand
impedance in a virtual sport allows us to analyze mus-
cular activities that play an important role in acquiring
task-related hand impedance characteristics that should
be useful for sports training and rehabilitation Tsuji et al.
(2001).

2 Virtual tennis system

2.1 Experimental equipment

Figure 1 depicts a prototype system for virtual sports
training in which a trainee can play virtual tennis. The
trainee is required to hit a computer-controlled virtual ball
by operating a handle attached to a robot instead of hitting
an actual tennis ball, while the robot displays interaction
force to the trainee in hitting the ball. The robot in the
training system is constructed with a linear motor table
(Nippon Thompson Co., Ltd., Tokyo; maximum driving

Fig. 1a,b. Virtual tennis system. a System configuration. b A trainee
playing virtual tennis. The trainee is requested to hit a computer-
controlled virtual ball instead of an actual tennis ball by operating a
handle attached to a robot while the robot displays interaction force
to the trainee in hitting the ball. To investigate a mechanism of human
impedance regulation, surface EMG signals are measured from eight
muscles of the trainee’s arm. The stereo video camera system with two
CCD cameras can measure the arm posture of a trainee by detecting
color markers attached to the trainee

force 10 kgf; encoder resolution 2 µm) that is impedance-
controlled so that the virtual interaction force between
the virtual ball and the racket handle can be displayed
to the trainee. A six-axis force sensor (B.L. Autotech Co.,
Ltd., Kobe, Japan; resolution: translational force on the x-
and y-axes 5×10−3 N, on the z-axis 15×10−2 N Ctorque
3×10−3 Nm) is attached at the base of the handle to mea-
sure the operating hand force of the trainee. The trainee
can play virtual tennis on the basis of the visual infor-
mation provided on the display. A human can change his
hand impedance by adjusting the muscle contraction level
as well as arm posture Tsuji et al. (1996). To investigate
a mechanism of human impedance regulation, surface
EMG signals in the training are measured from the flexor
(flexor carpi radialis, FCR) and the extensor (extensor uln-
aris, ECU) in the wrist joint, the flexor (biceps brachii, BB)
and extensor (triceps brachii, TB) in the elbow joint, and
the flexors (pectoralis major, PM; deltoideus anterior, DA)
and extensors (teres major, TM; deltoideus posterior, DP)
in the shoulder joint. The sampling rate for hand move-
ments and EMG signals was set at 1 kHz in the experi-
ments. Also, the stereo video camera system with two CCD
cameras (Quick MAG: Oh-yoh Keisoku Kenkyusho, sam-
pling rate: 60 Hz) are utilized to observe the arm posture
of a trainee by detecting color markers attached to him.

2.2 Model of virtual tennis

Figure 2a shows a model of virtual tennis in which a trainee
hits a virtual ball so as to make the ball bounce off a wall.
The virtual ball is represented by a viscoelastic model on
the assumption that the mass is concentrated at the center
of the ball as shown in Fig. 2b, where the model parameters
are determined with consideration of the racket strings.
The racket is regarded as a flat board parallel to the x–z
plane with an infinite length in both the x- and z-axes and
has only one degree of freedom along the y-axis. Also,
the racket has an inclination θ from the y-axis. The vir-
tual ball moves with two degrees of freedom on the y–z
plane.

Fig. 2a,b. Model of virtual tennis. a A trainee hits a virtual ball so as
to make the ball bounce off a wall, where Xo [=(0,Xoy,Xoz)] denotes
the center position of the ball, Xe is the racket position, and θ is the
inclination of the racket from the y-axis. b The virtual ball is repre-
sented by a viscoelastic model under the assumption that the mass
is concentrated at the center of the ball, where the model parameters
are determined with a consideration of the racket strings. Mb is the
mass of the ball. The viscoelastic properties of the ball, Kb and Bb,
are defined together with the corresponding properties of a racket
string by (7) and (8)
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Then, the motion equation of the racket can be written
as follows:

MrẌey +BrẊey =Fy +Fe , (1)

where Fy denotes the interaction force applied from the
virtual ball to the racket along the y-axis, Fe is the oper-
ating hand force, Xey is the racket position on the y-axis,
and Mr and Br are the target inertia and target viscosity
of the robot, respectively. The trainee can enjoy a realistic
feel of the racket handle characterized by Mr and Br and
perceive a virtual interaction force upon hitting the virtual
ball.

Dynamic behaviors of the virtual ball can be given by
the following equations:

MbẌoy = −Fy +Fwy , (2)
MbẌoz = −Fz +Fwz −Mbg , (3)

where Xo [= (0,Xoy,Xoz)
T] denotes the center position of

the ball; Mb is the mass of the ball; Fy and Fz are interac-
tion forces in the y- and z-axes upon impact, respectively;
Fwy and Fwz are the reaction forces as the ball rebounds
off the wall and the floor, respectively; and g represents
the gravitational acceleration. Fy and Fz are calculated as
follows:

Fy =
{
Bb(dXby)dẊby +Kb(dXby)dXby (|Xry |≤Rb)
0 (|Xry |>Rb) ,

(4)

Fz =Fytanθ , (5)
dXby =Xry −Rb, (6)

where Xry [= Xoy −Xey ] represents the relative position of
the ball and the racket, θ is the inclination of the racket
from the y-axis, and dXby is the displacement of the ball
due to impact. Note that the reaction force of the ball
can be generated in the z direction as well as the y direc-
tion. The viscoelastic properties of the ball, Kb(dXby) and
Bb(dXby), are defined together with those of a racket string
by

Kb(dXby) = 318.5+11452.8|dXby | , (7)

Bb(dXby) = 2ζb

√
MbKb(dXby) , (8)

where ζb denotes the damping coefficient. Each parameter
was designed by trial and error on the basis of the refer-
ence study by Kawazoe (1992). Fwy and Fwz in (2) and (3)
are expressed with a viscoelastic model as

Fwi =
{

Bw(dXwi)dẊwi +Kw(dXwi)dXwi (|Xsi |≤Rb)
0 (|Xsi |>Rb) ,

(9)
dXwi =Xsi −Rbni , (10)

ni =



Xsi

|Xsi | (Xsi �=0) ,

0 (Xsi =0) ,
(11)

where i ∈ {y, z}, Xsi (=Xoi −Xwi) represents the relative
position of the ball and the environment, and Xwy and
Xwz are the positions of the wall and the floor, respec-
tively. Kw(dXwi) and Bw(dXwi) are the stiffness and the

Fig. 3. Resultant stiffness of the ball-and-strings system (Kb) and the
ball-and-environment system (Kw). The nonconstant stiffness char-
acteristics enable us to generate a nonlinear interaction force so that
the trainee can have a realistic feeling of hitting a real ball

viscosity of the ball upon impact with the environment
expressed by

Kw(dXwi) = 214.6+75068|dXwi | , (12)

Bw(dXwi) = 2ζw

√
MbKw(dXwi) , (13)

where ζw is the damping coefficient.
Figure 3 illustrates the relation between the stiffness

and the displacement of the virtual ball where the solid
line represents Kb(dXby) and the broken line Kw(dXwi).
The nonconstant stiffness of (12) and (13) enables us to
generate a nonlinear interaction force so that the trainee
can have a realistic feeling of hitting a real ball. Note that
the damping characteristics of the ball can be regulated
by ζb and ζw.

2.3 Impedance control

Figure 4a represents a block diagram of the devel-
oped human-robot system for virtual tennis training, and
Fig. 4b explains the impedance control part. The robot
is impedance controlled by a control input Fact Hogan
(1985), while the dynamic behavior of the racket handle
follows (1).

The dynamics of the robot under the impedance control
can be expressed by

Fig. 4a,b. Impedance control system for virtual tennis. a Block dia-
gram of the control system of the developed virtual tennis system. b
Impedance control part. The robot is impedance controlled by a con-
trol input Fact Hogan (1985), while the dynamic behavior of the racket
handle follows (1). The dynamics of the robot under the impedance
control can be expressed by (14), where M and B denote, respectively,
the desired inertia and the desired viscous friction of the robot
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Fig. 5a–d. Examples of time
histories of hand position and
hand force by subjects A, C, E,
and F (a–d). a A successful trial
by the well-trained subjects.
b–d Failed trials by the untrained
subjects

R(s)= 1
Ms2 +Bs

, (14)

where M and B denote, respectively, the desired inertia and
the desired viscous friction of the robot. In this paper, these
robot motion control parameters are set at M =4.7 kg and
B = 47.0 Ns/m, and the target impedance is set at Mr =
0.9 kg, Br =0 Ns/m, and Kr =0 N/s.

3 Analysis of human movements in virtual tennis

3.1 Experiments

Human movements in virtual tennis were measured for
two well-trained subjects (A and B), who had gone through
skill-acquisition training for virtual tennis in advance, and
four untrained subjects (C, D, E, and F). Based on pre-
liminary experiments, the inclination of the racket was
set at θ = 0.349 rad, the distance between the racket and
the wall was 2 m, the initial position of the ball Xo(0)=
(0.0,1.0,0.5) m, the initial speed of the ball Ẋo(0) =
(0.0,−2.0,3.0) m/s, the mass of the ball Mb =0.1 kg, and
the radius of the ball Rb = 0.06 m. The origin of the x-
and y-axes was settled at the initial position of the racket,
and the virtual ground coincided with the x–y plane
(z= 0). The damping coefficients of the virtual ball were
set at ζb =0.06, ζw =0.15 on the basis of the experimental
data for the rebounding behavior of a real ball, in which
the ball was released from a height of 1 m under free-fall.

Each subject in the training experiments was asked to
strike the ball, thrown from the front, just one time so as

to hit a specified round target with a radius of 0.1 m on the
wall. The release time of the virtual ball was indicated on
the display 3 s in advance. The extent of the subject’s skill
was evaluated by the success rate of hitting the target.

3.2 Experimental results

Figure 5 represents examples of the time histories of hand
position and hand force by the subjects, where Fig. 5a
shows a successful trial by the well-trained subjects while
the others represent failed trials by the untrained subjects.
Table 1 shows the rates of successful trials for each subject.

It can be seen from the time profiles of hand position
that the subjects hit the ball by thrusting the racket han-
dle forward without taking a backward swing. The sub-
jects attempted to swing the racket in hopes of hitting
the ball with appropriate timing. There exist differences
in the hand force profiles between the well-trained sub-
jects and the untrained subjects. The impact force appears
just around the peak of the hand force profile in Fig. 5a.
This means that the well-trained subjects could hit the ball
with maximum hand force. By contrast, in the failed trials
by the untrained subjects (Fig. 5b–d), the impact force is

Table 1. Rates of successful trials (subjects A–F)

Subject A B C D E F

Successful rate 91.2 85.7 56.5 59.6 28.8 30.0
No. of trials 107 121 105 118 96 109
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Fig. 6. Example of the measured EMG signals (subject A). The EMG
signal was measured for 5 s beginning 3 s before the ball was thrown.
The subject prepared for hitting the ball by contracting each muscle
in the preliminary phase

observed before or after the peak of the hand force profile,
and three types were found as follows:

1. The subject in Fig. 5b hit the ball too early; he maxi-
mized hand force before hitting the ball.

2. The untrained subject in Fig. 5c generated the maxi-
mum force at the moment of impact, but it was much
larger than that of a well-trained subject.

3. The untrained subject in Fig. 5d hit the ball too late; he
generated hand force in a flurry after impact with the
ball.

We see that a subject playing virtual tennis must generate
and control his hand force Fe according to the ball motion
so as to hit the target.

Figure 6 illustrates an example of the full-wave rectified
EMG signals of subject A during virtual tennis in which
the EMG signal was measured for 5 s beginning 3 s before
the ball was thrown. The subject prepared for hitting the
ball by contracting each muscle in the preliminary phase.
It must be noted that the subject could regulate his hand
impedance in operating the racket handle by changing the
muscle contraction levels of both flexor and extensor in
his wrist joint (Tsuji et al. 1996; Gomi and Kawato 1996).

Figure 7 shows an example of the arm postures of sub-
ject B while playing virtual tennis. Note that the subject
swung his arm by actively changing the elbow and the
shoulder joint angles. Thus, the developed virtual sports

Fig. 7a–c. Example of arm postures while playing virtual tennis (sub-
ject B). The subject swung his arm by actively changing the elbow and
shoulder joint angles

training system can measure dynamic movements of a
trainee playing virtual sports such as hand movements,
surface EMG signals, and arm postures.

3.3 Process of skill acquisition

The experimental results with the untrained subjects (sub-
jects C, D, E, and F) demonstrate that subjects can be clas-
sified into two groups differentiated by the skill acquisition
process. Subjects C and D progressed by hitting the tar-
get after repeated trials, while subjects E and F could not
succeed in the end. This subsection discusses the change
of motions of subjects C and D.

Figure 8 shows examples of the time profiles of hand
position and hand force by subject C before and after skill

Fig. 8a–b. Examples of the time profiles of hand position and hand
force by subject C before and after skill acquisition (in the 24th and
84th trials). The broken line in the figure represents the experimental
result before skill acquisition and the solid line the result after skill
acquisition
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Fig. 9a,b. Time histories of the horizontal flexion-extension angle of
the shoulder joint θ5 and the angle of the elbow joint θ8 during virtual
tennis

Fig. 10. Link model of a subject. The joint numbers in Fig. 9 are
defined with a rigid link model of the right side of the upper half of
the human body

acquisition (in the 24th and 84th trials). The broken line
in the figure represents the experimental result before skill
acquisition and the solid line the result after skill acqui-
sition. Note that the skilled subject applies greater force
to the racket from the beginning of the motion to swing
the racket efficiently. These movements coincided with his
joint motions in virtual tennis. Figure 9 shows time histo-
ries of the horizontal flexion-extension angle of the shoul-
der joint θ5 and the angle of the elbow joint θ8 during
virtual tennis, where the joint numbers are defined with
a rigid link model of the right side of the upper half of
the human body depicted in Fig. 10. The broken line in
Fig. 9 represents the result before skill acquisition and the
solid line the result after skill acquisition. The skilled sub-
ject reduced wasteful joint motions for the target task and
moved his arm efficiently.

The skill-acquiring course of an unskilled player can
also be observed from his EMG signals in training exper-
iments. Figure 11 depicts the full-wave rectified EMG sig-
nals before and after skill acquisition. Note that the subject
discharges more EMG signals in preparation for move-
ments and increases the muscle contraction level of both
the flexor (FCU) and extensor (ECU) in the wrist joint
after skill acquisition. This indicates that the skilled sub-
ject stiffens his wrist joint by regulating its impedance.
The unskilled player makes progress in adapting his arm
motion and impedance properties according to the target
task through repeated practice.

Fig. 11a,b. Example of the full-wave rectified EMG signals before
and after skill acquisition (subject C)

4 Change of hand impedance depending
on the environment

A set of experimental results of the EMG signals, as
described in 3.2, suggests that humans regulate hand
impedance not suddenly but gradually in preparation for
motion. It is supposed that the impedance regulation is
performed successfully in the motion of a well-trained sub-
ject. This section, then, investigates human hand imped-
ance in the preparation phase to reveal how humans
regulate hand impedance according to experimental con-
ditions.

4.1 Impedance measurement

Let us consider a situation where a trainee is playing vir-
tual tennis by operating the racket handle attached to the
robot. When the subject’s hand is displaced in the y direc-
tion from its equilibrium by a small disturbance with short

Fig. 12. Schematic description of hand impedance. While the sub-
ject maintains current hand position, an external disturbance to the
hand is applied by a robot. Time changes of the hand displacements
and forces caused by the disturbance are measured for estimating the
hand impedance using a second-order linear model
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duration as shown in Fig. 12, the dynamic properties of
the hand can be approximated with mechanical impedance
parameters as

MedẌey(t)+BedẊey(t)+KedXey(t)=−Fe(t) , (15)

where Me, Be, and Ke represent the hand inertia, viscos-
ity, and stiffness, respectively, and dXey (=X∗

ey(t)−Xey(t))
denotes the distance between the hand position Xey(t) and
the virtual trajectory X∗

ey(t). Fe(t) is the hand force cor-
responding to the external disturbance to the handle. The
impedance parameters might be estimated by means of
the least-squares method with the measured hand motion:
Xey(t), X∗

ey(t), and Fe(t) (Tsuji et al. 1994, 1995). However,
the virtual trajectory X∗

ey(t) in dynamic motion is not mea-
surable and may vary with a trainee’s hand movements.

The unknown parameters Me, Be, Ke, and X∗
ey(t) can-

not be uniquely determined since the measurable param-
eters are only Xey(t), Ẋey(t), Ẍey(t), and Fe(t). Moreover,
hand impedance should be regarded as a time-varying
element because impedance parameters vary according
to arm posture and muscle contraction level (Gomi and
Kawato 1996). Consequently, it is very difficult to estimate
the hand impedance in dynamic motion.

On the other hand, humans seem to regulate their
impedance properties before motion, as suggested in
Sect. 3.2. A player of virtual tennis should adjust his hand
impedance just before hitting the ball according to the
velocity and physical properties of the ball; otherwise, it
would be too late to prepare for a hitting action. Thus,
this paper focuses on hand impedance in the preparation
phase, experimentally investigating task readiness imped-
ance in virtual tennis.

The virtual trajectory X∗
ey(t) can be regarded as invari-

able in the preparation phase, so the task readiness imped-
ance parameters in (15), Me, Be, and Ke can be estimated.
Some aspects of human impedance mechanisms, such
as functions of regulation and adaptation according to
circumstances, can be exploited in terms of task readi-
ness impedance, although task readiness impedance dif-
fers from human impedance in dynamic motion.

4.2 Accuracy of estimated impedance

Figure 13 illustrates the results of the accuracy testing of
estimated impedance parameters in the developed virtual
tennis system. A weight was attached to the racket handle
of the robot while a spring was set between the handle and
the environment. The intersections of the dotted lines in
the figure represent the true values of the attached imped-
ance to the robot handle. Note that both stiffness and iner-
tia were estimated correctly, and the standard deviations
for the stiffness and the inertia are less than 4.53 N/m and
0.01 kg, respectively.

4.3 Experiments

Task readiness impedance was investigated on four well-
trained subjects who had received skill-acquisition train-
ing in virtual tennis and showed high success rates. To

Fig. 13. Accuracy of estimated impedance parameters in the devel-
oped virtual tennis system, where the developed system was attached
to already known spring-mass systems. A known weight was attached
to the racket handle of the robot while a known spring was set between
the handle and the environment. The intersections of the dotted lines
in the figure represent the true values of the spring-mass system.
Mean values for five sets of the estimated results are plotted. Note
that both stiffness and inertia were estimated accurately, where the
values of SD for the stiffness and the inertia are less than 4.53 N/m
and 0.01 kg, respectively

change the impact force between the racket and the ball,
two different ball masses, Mb =0.1,0.5 kg, were used, and
two different handle viscosities were prepared to change
the dynamic properties of the racket handle (Kr,Br,Mr)
= (0.0, 5.0, 1.0), (0.0, 20.0, 1.0) N/m, Ns/m, kg. The exper-
iments were carried out under the following four condi-
tions:

I.Mb = 0.1 kg,Br =5.0 Ns/m (16)
II.Mb = 0.5 kg,Br =5.0 Ns/m (17)

III.Mb = 0.1 kg,Br =20.0 Ns/m (18)
IV.Mb = 0.5 kg,Br =20.0 Ns/m (19)

Hand impedance along the y-axis was estimated by
applying a disturbance at two different timings. The first
disturbance was added at 2.5 s before the ball was thrown
(before motion), and the second was at 0.7 s before the
subject started moving the handle (task readiness). Table 2
shows the onset time of the disturbances in each condition
for all subjects. The hand impedance was then estimated
with 300 data points from the beginning of the onset time
of the disturbance, assuming the virtual trajectory was
constant. Figure 14 shows an example of the measured
signals for impedance measurements, where the time his-
tories of hand position Xey(t), hand velocity Ẋey(t), hand
acceleration Ẍey(t), and hand force Fe(t) are given in or-
der from left to right. The hand impedance parameters,
Ke, Be, and Me, were estimated by using (15) with these
time series.

Table 2. Onset time of disturbance for impedance measurements.
The hand impedance was then estimated with 300 data points from
the beginning of the onset time of the disturbance, assuming the vir-
tual trajectory was constant

Experimental conditions

Subjects I (s) II (s) III (s) IV (s)

A 2.60 2.65 2.65 2.75
B 2.65 2.65 2.75 2.65
C 2.65 2.60 2.65 2.65
D 2.60 2.65 2.75 2.60
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Fig. 14. Example of measured
signals for measurement of task
readiness impedance (subject A).
Time histories of the hand position
Xey(t), hand velocity Ẋey(t), hand
acceleration Ẍey(t), and hand force
Fe(t) are given in order from left to
right

4.4 Analysis of human impedance

We first analyzed how the well-trained subjects adjusted
their motions according to the experimental conditions.
Figure 15 gives the mean values and the standard devia-
tions of the hand motion at the moment of impact with
the ball.

The subjects increased their hand force for hitting the
large mass of the ball to counteract the interaction force
(II and IV). It is difficult for a player to move a hand
with rapid acceleration under highly viscous conditions
(III and IV). Thus, the subjects took a larger backswing
of the racket in order to hit the ball with sufficient veloc-
ity than when under less viscous conditions. This suggests
that the well-trained subjects could adapt their dynamic
motion according to circumstances.

Table 3 gives the mean values and standard deviations
of the estimated impedance parameters for each task con-
dition. Also, Figs. 16 and 17 show the changes of the hand
stiffness and viscosity, respectively, depending on the task
conditions.

Fig. 15a–d. Hand motion at time of impact (subject A). The sub-
jects increased their hand force to counteract the interaction force
upon hitting the balls, where the mass of the ball was substantial
(II and IV). Players move their hands with rapid acceleration under
highly viscous conditions (III and IV)

Figure 16 and Table 3 indicate that the subjects
increased their hand stiffness to prepare for impact under
all experimental conditions. Note that the subjects stiffen
their arms to respond to the impact force depending on
the weight of the ball.

Moreover, comparing the experimental results of four
subjects with different viscous environments under the
same weight of the ball (I and III, II and IV), it can be
seen from Fig. 17 that the hand viscosity of subjects A,
B, and C in a less viscous environment becomes greater
than in a more viscous environment. This suggests that a
well-trained subject increases hand viscosity to maintain
stability under a less viscous environment.

By contrast, subject D’s hand viscosity increases in a
more viscous environment than in a less viscous environ-
ment. Although subject D was regarded as a well-trained
subject based on the rate of successful trials, he was the
only player who increased his hand viscosity unnecessar-
ily in more viscous environments. From the impedance
point of view, subject D is a less skilled player compared
to other well-trained players and needs to polish his skills.
Impedance analysis in human movements reveals such
subtle differences between players, differences that cannot
be found through analysis of success rates.

5 Conclusion

This paper developed a virtual tennis system using an
impedance-controlled robot as a first step toward realiz-
ing impedance training in dynamic motion. The process of
acquiring skills was demonstrated through the analysis of
dynamic characteristics of human arm movements in the
training experiments with the measured EMG signals and
arm postures. The task readiness impedance of the well-
trained subjects was then investigated, and the following
primary characteristics were clarified:

1. Subjects prepare for a motion by increasing hand stiff-
ness.

2. Subjects change their hand stiffness according to the
mass of the ball to control the interaction force.

3. Skilled subjects increase their hand viscosity in less vis-
cous environments to maintain stability.

We can thus conclude that humans skillfully regulate hand
impedance according to given tasks. The characteristics of
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Table 3. Measured hand impedance during virtual tennis (subjects A–D). Mean values and SDs for five sets of estimated impedance parameters
for each task condition

human hand impedance regulation have been reported.
Mussa-Ivaldi et al. (1985) showed that humans cannot
regulate the direction of hand stiffness. Tsuji et al. (1994,
1995) found that humans could regulate hand viscosity to
some extent. Also, Tsuji et al. (1995) and Tsuji and Kaneko
(1996) revealed that the magnitude of hand viscosity can
be changed according to hand force. Gomi and Kawato
(1997) demonstrated that humans regulate hand stiffness
magnitude to be smaller in motion than in a stable posture.
Although hand impedance characteristics have been ana-
lyzed in simple movements only, this research may have

pioneered hand impedance measurements in task-related
movements. The experimental results showed for the first
time that humans can regulate hand stiffness and viscosity
according to a given task. Note that the obtained results
might be different if based on dynamic properties during
real tennis. If in the future an experimental system capable
of measuring three-dimensional forces and movements is
constructed using the proposed method, the trainees may
carry out an impedance regulation training that is similar
to one used in real tennis.
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Fig. 16a–d. Hand stiffness during
maintenance of stable posture and
at task readiness. The subjects
increased their hand stiffness to
prepare for movements under all
experimental conditions (I–IV)

Fig. 17a–b. Hand viscosity at task readiness. Comparing the exper-
imental results of subjects A–C with different viscous environments
under the same ball weight (I and III, II and IV), it can be found
that the hand viscosity in a less viscous environment becomes greater

than in a more viscous environment. By contrast, the hand viscosity
of subject D in a more viscous environment becomes greater than in
a less viscous environment

Future research will be directed at measuring and
analyzing hand impedance in two-dimensional move-
ments. We also intend to collect task-related imped-
ance data of human movements for application to sports
training and rehabilitation. In that case, the dynamic
systems theory needs to be combined with the pro-
posed method to meticulously analyze complex move-
ments such as cyclical movements in various sports
Kurz and Stergiou (2004).
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