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in estimation of some mapping by neural networks, a part of nonlinear func-
tions included in the mapping to be learned is often known beforehand. For
example, the equation of motion of the manipulator includes particular non-
linear functions such as sinusoidal functions and multiplication. The present
article discusses the method used to embed known nonlinear functions into
the error backpropagation neural network to utilize the knowledge in terms
of the mapping to be learned. The network proposed is able to learn the
known part by using the precrganized layer and the unknown part by using
the hidden layer separately.

Then the network is applied to the learning of the inverse dynamics of the
direct-drive manipulator. When the preorganized layer is prepared corre-
sponding to the equation of motion, the experimental results show that the
network can improve the learning speed and the generalization ability and
also can acquire the internal representation.
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1 INTRODUCTION

The dynamics of a multiarticular manipulator shows a high degree of nonlinearity,
such as Coriolis and centrifugal forces, gravity force, and the change of inertia
characteristics by the posture. Therefore, it has been general to adopt the method
that computes the joint torques from the equation of motion of the manipulator
and the desired trajectory. If the motion of the equation can be identified exactly,
this computed torque method makes it possible to control the manipulator with
high precision. In many industrial manipulators, however, there are often cases
when the parameter values such as the position of center of mass and the inertia
moment are not clear. Furthermore, there are unknown factors such as the joint
friction and the structural gravity compensation (e.g., spring and counterbalanced),
which in many cases are not described by the usual equation of motion.

To address the problem of manipulator control in uncertain environments, new
approaches using neural networks have been applied. Albus [1] presented the
cerebellar model articulation controller, which is essentially an adaptive, distributed
table lookup method. Jordan and Rumelhart [2] proposed a recurrent backprop-
agation method. Kawato et al. [3] have implemented a feedback-error learning
neural network that can solve the inverse dynamics problem. These methods,
however, do not utilize the knowledge on the controlled objects, that is, the char-
acteristics of the equation of motion.

In estimation of some mapping by neural networks, a part of nonlinear functions
included in the mapping to be learned is often known beforehand. For example,
as well known, the equation of motion of the manipulator includes particular
nonlinear functions such as sinusoidal functions and multiplication. Therefore, in
this article, considerations are made to embed the known functions into a network
as preorganized knowledge. It is then expected that by structurally preparing preor-
ganized knowledge, the learning speed can be accelerated and the generalization
ability can be increased.

2 PREORGANIZED NEURAL NETWORK

Figure 1 shows the neural network proposed herein. The network consists of the
input layer, the preorganized layer, the hidden layer, and the output layer. Under
the evaluation function E that minimizes the square sum of the error between the
target signal £; and the output signal y; of the network, the weighting coefficient
w,; among units is modified according to the following equations.

oF dy,
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Aw; oy, ax, Y (1)
oE vy =t (output layer) o
D OF 3y,

Wy, other layers
e (2 ( yers)



PREORGANIZED NEURAL NETWORKS 83

Preorganized Layer

Target Signals

H
. -

Hidden Layer

Figure 1. Preorganized neural network.

where x; denotes the input to unit i and v denotes a learning rate. The output
function of the units in the hidden layer is a sigmoid function,

fi=1Q +e>). 3)
For the output function of the units in the preorganized layer, a known function

i) = &) @)

is used. In the following, the unit in which ¢;(x) is used as the output function is
called the preorganized characteristic unit.

From the error backpropagation learning rule [Equations (1) and (2)], the output
function of each unit is not restricted to the sigmoid function. If the function has
the first derivative, it is possible to use it as the output function. So we assume
that ¢, (x) is the first differentiable nonlinear function and is included in the mapping
to be learned. Then we can apply the error backpropagation learning rule to the
preorganized layer as well as the hidden layer. When an adequate learning rate is
given, the weighting coefficient w; converges a value that minimizes the square
sum of the error between the target signal ¢, and the output signal y, of the network.

Furthermore, if it is required to embed a nondifferentiable function into the
network, the function should be learned in advance by using the error backprop-
agation—type neural network (hereinafter called a subner), and then the subnet
might be embedded into the preorganized network. When the overall network is
learned, the weighting coefficients within the subnet should be fixed during learn-
ing; that is, the subnet is regarded as a preorganized unit.

This network is distinguished by the preorganized layer in which nonlinear func-
tions known in advance are embedded. Then, the known parts in the mapping are
learned by the preorganized layer and the unknown parts are learned by the hidden
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layer. So, it is expected that the network can learn more accurately and rapidly
than the conventional network that consists of only the sigmoid functions (here-
inafter called a sigmoid-type network).

3 LEARNING ABILITY OF PREORGANIZED
NEURAL NETWORK

To confirm the learning ability of the preorganized neural network, simulation
experiments were performed. The mapping to be learned is as follows.

t = 2sin(x, + x,) — 2sin{x, — 2x,) + cos(2x; ~ x,) + 2cos (~x, — 2x,)
—(=x;, + 2%, + (—2x, + 2x,)%, (5)

which is a system with two inputs and one output. The target signals are nine sets
that consist of every combination of x|, x, = 0, =£1.0. The delta-bar-delta rule {4}
was used to choose the learning rate n. For the weighting coefficient, we used 10
sets of initial values that consist of uniform random numbers such that |w;| < 1.0.
The output function of the unit in the hidden layer is a sigmoid function. The
hidden layer consists of 10 units X 2 layers or 10 units X 1 layer. The preorganized
layer is prepared in four cases as follows:

The output function of each unit is sin x or cos x.

The output function of each unit is cos x or x°.

The output function of each unit is sin x, cos x, or x2.
The preorganized layer is not included in the network.

b S

Note that nonlinear functions involved in the mapping to be learned [Equation (5)]
but not prepared in the preorganized layer must be learned in the hidden layer.

Table 1 shows the learning results of the network. The mean iteration number
(MIN) in the table represents the average of the learning iterations over 10 sets of
initial weighting coefficients when the square sum E of the error is less than 1077,
The table shows that our preorganized neural network converges more rapidly than
the sigmoid-type network. The network converges more rapidly when more preor-
ganized units are prepared.

The success rate in Table 1 shows the percentage where the learning has con-
verged within 10° iterations. When the hidden layer is one, the sigmoid-type net-
work cannot learn the given nonlinear mapping. From this it is known that the
learning ability is improved by adding the preorganized units. In other words, the
preorganized units can protect the network from being caught in local minima.

Figure 2 shows the interpolation ability of the network. Figure 2a is the sigmoid-
type network (10 units X 2 layers); Figure 2b is the preorganized network (the
case of Table 1C). The dashed line represents the nonlinear mapping to be learned,
and the solid line shows the output mapping of the network after learning. In Figure
2a, the output of the network coincides with the mapping to be learned at only x,
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Table 1. Learning Ability of Preorganized Neural Networks

Type Preorganized Layer Hidden Layer | Success Rate (%) | M.LN. (E<10™")
A sinz,cosz  (242) (10x1) 60 1078
sinz,cosz  (242) {10x2) 100 411
sinz,cosz  (5+5) {10x1) 100 155
sinz,cosz  {5+5) (10x2) 90 162
B z’cosz  (2+42) (10x1) 60 1001
z’cosz  (242) (10x2) 100 1174
2P cosz  (5+5) (10x1) 100 1169
2 cosz  (545) (10x2) 100 1335
C sinz,cosz,z* (2+2+2) R 60 239
sinz,cosz,2? (5+5+5) ——— 100 164
D - (10x1) 0 —
—_——— (10x2) 100 4067

= {—1, 0, 1) which is taught by the target signal. Conversely, the preorganized
network in Figure 2b coincides with the target mapping almost everywhere. This
also holds for the input variable x,. Therefore, the preorganized neural network
can more accurately interpolate the mapping other than the points given by the
target signal.

4 APPLICATION TO THE INVERSE DYNAMICS LEARNING
OF A ROBOT MANIPULATOR

The preorganized neural network mentioned earlier was applied to the inverse
dynamics learning of a two-joint planar direct-drive (DD) robot.

Equation of Motion of a Direct-Drive Rebot

Figure 3 shows the DD robot used in the experiment. Since the DD robot has no
reduction gears, the robot control is influenced significantly by nonlinear forces
such as Coriolis, centrifugal, and inertia. Therefore, exact identification of the
robot dynamics becomes important.

The equation of motion of a two-joint planar manipulator is given by

1(0)8 + h(8, §) = T, (6)

where 6 € R? is the joint angle, T € R? the joint torque, I(8) € R? * ? the inertia
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Figure 2. Generalization ability of preorganized neural network.

matrix, and 4(8, §) € R? the Coriolis and centrifugal forces, which are given as

follows.

+ 2p5cos 6
I(e): [pl 3 2

p: + ps cos 6,

P2 + pscos 8, P2

h(e, 8y = [

_(pSG% + 2P39192)Sin 0,
p:#2sin 9, ’

And p,, p,, and p; in Equations (7) and (8) are given by

™

®
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250mm

weight : 75kg

Figure 3. Two-joint planar manipulator.

pr =1L + L, + mai + my(l7 + a3) ©
p. =1L + ma; (10
ps = myla,, (11)

where m; is the mass of link i, /; the length of link i, g, the distance from the joint
to the center of mass, and /; the inertia moment about the center of mass of
link i.

In the cases of inverse dynamics learning of the manipulator, a priori knowledge
is the equation of motion. Therefore, the sinusoidal function and multiplication
commonly involved in the equation of motion are used as the known functions
(). Then the preorganized layer is as shown in Figure 4. The correspondence
between parameters p,, p,, and p; in Equations (9—11) and the weighting coefficient
w;; from the jth unit to the ith unit is shown in Table 2. The preorganized neural
network is formed by the preorganized layer as well as the hidden layer, which
consists of the sigmoid-type network, as shown in Figure 1. It is expected that the
parameters in the equation of motion might be learned by the preorganized layer,
and the unknown factors that are unable to be represented by the equation of
motion might be learned by the hidden layer.

Learning of the Inverse Dynamics
Learning of the preorganized neural network was done with the use of 100 pieces

of the target signal that had been obtained by manipulating the DD robot directly.
The input signals to the network are joint angle 6, angle velocity 0, and angle
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: Product unit

O : Linear unit

Figure 4. Preorganized layer for inverse dynamics learning.

Table 2. Relationships Between Link Parameters and Weighting Coefficients
in Preorganized Layer

Wij || Wi | Woy | Wap | Wiz | Wiy | Wys | Wi | Wog | Wy7 | VW

p || 273 | Pp3 P3 Py |—=2p3| —p3 | Py | Py | P2 | P2

acceleration 0, and the output signal of the network is joint torque 7 (see Figure
4). The sampling period of the signal is 125 ms.

First, to get appropriate initial weighting coefficients w;; of the preorganized
layer, only the learning of the preorganized layer shown in Figure 4 was performed.
This is nothing but the parameter identification using the least squares method.
Because of the noisy data, the estimated parameters would not be true values, but
must be nearly true values. Therefore, this also can be regarded as a type of a priori
knowledge and helps the network learning. In this learning stage, the initial values
of the weighting coefficients w;; between the output layer and the last layer of the
preorganized network are set to random numbers and |w,;| < 1.0. The other weight-
ing coefficients are fixed at 1.0. The learning was discontinued when the error had
shown no decrease. Next, the hidden layer was added to the network, and the
overall network was learned by the error backpropagation rule. The initial values
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of the weighting coefficients of the hidden layer also were random numbers and
lw;] < 1.0.

i

An example of the learning results is shown in Figure 5. The longitudinal axis
denotes the error, and the transverse axis denotes the learning iterations. The solid
line corresponds to the preorganized neural network, and the dashed line corre-
sponds to the sigmoid-type network (hidden layer: 7 units X 2 layers). Furthermore,
the error is normalized by the square sum of the target signal (torque) as follows:

00

bz|”

> @) — y, )y
5 ) (12)
0%

E:i= j=
i=tj=1

The addition of the hidden layer to the preorganized network occurred at 100
iterations, as shown by the solid line in Figure 5.

For 10 sets of initial values of the weighting coefficients, the average learning
iteration where the error does not exceed 0.05 was 190.8 (standard deviation: 92.3)
in the preorganized network and was 599.8 (standard deviation: 161.7) in the

A \
0.25F
g 0.20fF :
: ;
§ 015}
o '
8 \
£ .
£ 0.10f
o
SN
0.05 F

100 200

Iterations

—— Preorganized neural network

Sigmoid type neural network

Figure 5. Example of learning history.
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Table 3. Results of Inverse Dynamics Learning

Normalized error, E

Teaching Unlearned patterns

patterns | 5 2 3 4 5 6 7 8 s | Mean

Preorganized N.N.{  0.03 0.05 | 0.08 | 009 | 005 { 0.10 } 0.05 | 0,10 | 0.06 | 0.10 || 0.07

Backpropagation -

0.04 018 | 016 | 0.34 | 0,13 | 0.23 | 0.21 | 0.34 | 0.24 | 0.36 [} 0.24
type N.N.

sigmoid-type network. This shows that the former converges much more rapidly
than the latter. Note that the number of the weights that can be modified is 105
for both networks, and only 10 weights of the preorganized network can be modified
during the initial learning.

Generalization Ability

In Section 3, we showed that the interpolation ability of the preorganized network
was better than that of the sigmoid-type network. However, data (8, 6, 8, 7) used
as the target signals would include some random noise in the measurement. Then
the problem is when the learning should be stopped to investigate the generalization
ability of the network.

In this article, we define a generalization index regarded as a modified cross-
validation method [5]. Now we define the error signal ¢;(0) € R’ for the ith input
signal under the set w of the weighting coefficients as follows:

e(w) =t — y(w), (13)

where 1, € R* denotes the ith target signal and y;(w) € R’ denotes the ith output
signal of the network under the weighting set . We assume that the probability
density function of the error signal e;(w) is a channel-independent Gaussian with

zero mean and variance o; (j = 1,2, ..., L),
E
plelo, ot o3, .. o1) = [ plelo, o), a9
2
1/2 2( )
1 e;:(w
The log-likelihood of the samples (ey, e,, . . . , ey} is given by
L N o2
Ko, 0% 02 .o 03) = S log 2mor = 3 G (16)
2= i=1 20']3

If we estimate the network parameters o and o7 that maximize the log-likelihood,



PREORGANIZED NEURAL NETWORKS 91

; 2
S H 2
- 4 (G}
= H B
50 i
& o02H g
- B <]
& " .......... .,..‘ ~ 300 "~
;g 1 e seemsmree TSRS eae et g
= A e
Eoorf TN g
= UK Nl e N
£ g
L\ g
. 250 ¢
0 100 202 300 400 500
Iterations

=

g

o K<)
:o: .................................................. ’g
8 8

o - 450

I N 5
= B
g :
o =
Z =
L

: . 400 O

0 100 200 300 378 500

Iterations

—— Nomalized error for teaching patterns
-——- Generalization index
------ Nomalized error for unlearned patterns

(b) Sigmoid type neural network.

Figure 6. Generalization index G'W'{k).

it is expected that the generalization ability of the network becomes maximum. In
this article, we use the weighting coefficient set o* after the kth learning iteration
instead of the maximum likelihood estimate of w. Conversely, the maximum like-
lihood estimate of the variance can be derived by taking the partial derivative of
the log-likelihood with respect to o7,

2

g2 =

i

€2 (). (a7

2=

i

£
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Figure 7. Estimated joint torques for unlearned patterns.

As a result, we can define a generalization index GW(k) for the kth iteration as
follows:

LN

L N
GV = 0, 3%, 5 . . ., 61) = 5 2, log 2 [% > eé(w*)] 8
£

The learning should be discontinued at the iteration when the estimated index
G™(k) became minimum. Then it is expected that the generalization ability of the
network becomes maximum.

Nine sets of data (N = 100) were measured from DD robot control. Then the
test data were composed of 100 points randomly chosen from the measured data.
The preorganized network was learned by the test data. When the generalization
index G*")(k) became minimum, the learning iteration was stopped. Figure 6 shows
the change of G"™(k) during learning. Figure 6a corresponds to the preorganized
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Figure 8. Link parameters learned in neural networks.

network, and Figure 6b corresponds to the sigmoid-type network. The left longi-
tudinal axis denotes the error normalized by the target signals; the right longitudinal
axis denotes GV(k). The horizontal axis denotes the learning iterations. The solid
line denotes the error for the test data used as the target signal. The dotted line
denotes the error for unknown data and the broken line denotes G™(k). From
the figures, it is known that the error for the test data decreases with learning.
Conversely, the error for unknown data begins to increase again after some iteration
number because the target signal includes some random noise. Furthermore, the
learning iterations at which G™)(k) and the error for unknown data become min-
imum are almost the same, which means that G™M(k) represents the generalization
ability of the network rightly.

The learning of the network was discontinued at the iteration where the gen-
eralization index G"™")(k) became minimum (preorganized network: 202 times; sig-
moid-type network: 859 times). The errors of both networks for nine sets of un-
known data are shown in Table 3. It is shown that the generalization ability of the
preorganized network is better than that of the sigmoid-type network.

Figure 7 shows the joint torques estimated by the preorganized network and the



94 TSUJIAND ITO

sigmoid-type network, respectively, using the unknown data set (8, 8, 8). Figure
7a is the first joint torque, and Figure 7b is the second joint torque. The solid line
denotes the measured torques. The broken line denotes the joint torque estimated
by the preorganized network, and the dotted line denotes the joint torque estimated
by the sigmoid-type network. It is shown that the preorganized network has the
ability to estimate more accurate torque than the sigmoid-type network.

Finally, Figure 8a shows the values of 10 types of weighting coefficients from
the preorganized layer to the output layer in the preorganized network. Further-
more, Figure 8b shows the corresponding parameter values calculated from the
specification of the DD robot (see Table 2). Although the initial values of the
weighting coefficients were random, the weighting coefficients after learning ap-
proximates closely to the true values. This means that the preorganized network
has the ability to acquire the internal representation of the manipulator’s dynamics.

5 CONCLUSION

In this article, we discussed the method to embed known nonlinear functions into
the error back-propagation neural network to utilize the knowledge in terms of the
mapping to be learned. The network proposed is able to learn the known part by
using the preorganized layer and the unknown part by using the hidden layer
separately. Then the network was applied to the learning of the inverse dynamics
of the direct drive manipulator. When the preorganized layer was prepared cor-
responding to the equation of motion, the experimental results showed that the
network could improve the learning speed and the generalization ability and also
could acquire the internal representation. Additional research should be directed
to clarify the effectiveness of the preorganized network theoretically.
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