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Human beings remember plans concerning typical mo-
tions which occur frequently as schema, and by selecting
suitable schema depending on conditions, generate mus-
cular motion almost unconsciously. Though a motor
schema represents typical meotions, it is equipped with
superior plan structure taking into consideration the
concurrency and seriality of motions as seen in grasping
actions and walking motions, and the structure of plans
can be acquired by learning. In this paper, a study is
made of the modeling of such motor schema with the use
of neural networks. For this purpose, the neural net-
work is structured beforehand into the part which
generates action sequences in the form containing con-
currency (concurrent action generation part) and the
part which modifies the action sequences to satisfy con-
straints which cannot be executed concurrently (con-
straint representation part). After learning in each part
model the neural network can generate motion sequences
while taking into consideration the seriality and concur-
rency of motion by combining the parts at the time of
execution. Finally, this model is applied to the formation
of typewriting action motor schema, and it is demonsted
that generates motion sequences which take into con-
sideration the constraint of the motion system accom-
panying the execution of motion.

1. Introduction

Human beings can perform actions having several simul-
taneous purposes. For example, in the case of conversation
while eating, consciousness is oriented for conversation and
the motion of eating is done almost unconsciously. This is
because the plans concerning typical activities which take
place frequently are remembered as motor schema. By
selecting suitable schema depending on conditions at the
time of motion and switching to meet them, muscular mo-
tion necessary for the action can be generated almost
without conscious effort.

Of course, such unconscious action, though typical, has
to be equipped with fairly complicated plan structures.” For
example, when considering the plan of grasping a cup, if
the hand is made into a form for grasping a cup during the
reaching motion, effective execution is possible compared
to the case when the next action is started after prior action
is completed (Fig.1(a)). On the other hand, in case the cup
is going to be placed on a table, the hand cannot come away
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from the cup until the motion of placing the cup has been
completely finished (Fig.1(b)). Also, the dependent relation
between each motion must be represented in the plan con-
sisting of statically unstable motions such as walking in
order to keep stability and feasibility.

As mentioned above, it is known that human motor
schema skillfully assembles the concurrency and seriality of
each motion to constitute a plan in compliance with the
purpose of action and, in addition, the structure of a plan is
formed by leamning while typical activities are repeated
many times.

In this paper, a motor schema model is studied with the
object of applying it to control of robots which have
autonomous motion capability. To realize such motor
schema by learning, the use of a system in which concurrent
mechanisms operate naturally like neural networks is con-
sidered more suitable than information processing which
uses sequential symbol operation. A neural network has the
following advantages:

1) Realization of highly concurrent processing is possible;
2) Knowledge can be acquired naturally by learning; and

3) It is resistant to noise and failure

The neural network- has been noted as a new concurrent
decentralization type of information processing mechanism
taking the place of serial symbol processing.>> However,
because of its highly concurrent mechanism, it cannot readi-
ly handle data which changes over time and is not suitable
for the serial and logical information processing necessary
for high-level inference.”

Therefore, in realizing motor schema with the use of

action A action A
e
action B action B

action C ‘action D

(b) The action D cannot be
executed concurrently
with the action B

(a) An action sequence
with concurrency

Fig. 1. Action sequences with concurrency
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neural networks, the following points become problematic:
1) How to describe the concurrency and seriality of motion;
2) How to generate motion sequences by time; and

3) How to represent constraints in problem regions.

In this paper, an approach for composing motor schema
based on such neural networks is taken. For this purpose,
neural networks are structured beforehand into the part
which generate action sequences in the form containing
concurrency (concurrent action generation part ) and the part
which modifies action sequences to satisfy constraints
which cannot be executed concurrently (constraint repre-
sentation part). After learning in each part, the neural net-
work model can generate action sequences taking into
consideration the seriality and concurrency of action by
combining both parts at the time of execution. In Chapter
2, an outline of the conventional method proposed for serial
and time-series processing with the use of neural networks
is explained. In Chapter 3, a neural network for constituting
motor schema is proposed. In Chapter 4, this model is
applied to the formation of schema for typewriting action,
and it is demonstrated that action sequences which take into
consideration the constraint of action systems can be
generated.

2. Serial Processing by Neural Networks

Conventionally, the following two methods were con-
sidered for serial and time-series processing by neural net-
works. The first is a method to develop time series in spatial
patterns.”  This method, using a unit which has a delay
characteristic for unit time, prepares layers corresponding to
each unit of time and transmits input to the next layer in
sequence. However, this method requires the preparation of
layers corresponding to the length of the time-series 1o be
recognized, and the handling of excessively long time-series
is not possible.

The other method is one in which a model has explicit
internal state, and internal units are prepared for repre-
senting and keeping the internal state. By renewing the
internal state using feedback from the output units and the
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internal units one unit time before, it acts as a kind of
automata and handles time-series data.

Rumelhart et al.,” based on the latter approach, proposed
a neural network composed of the interpretation network
which determines action toward the environment and the
world model which simulates the outer world (Fig.2). Here,
the interpretation network interprets input and determines
the action corresponding to the input. The world model, by
simulating the environment, predicts what kind of change
of environment is brought about by the determined action.
By the feedback of the predicted result, it shows the pos-
sibility of executing sequential processing resembling
human thinking.

Furthermore, Rumelhart and Norman” simulated
typewriting action as a model to show that neural networks
have the capability to do serial and sequential processing.
Complying to the spelling of these words, they structured
the neural network using units corresponding to the schema
of the action of typing words and characters. In this model,
the concurrency of actions (such as fingers moving in
preparation for impending motion involved in typing the
next character) can be represented by partial activation of
the units corresponding to the next character and typing
mistakes made by humans can also be reproduced by adding
adding to the activation value. In this model, however,
spelling is required to be given beforehand in the network
structure,

On the other hand, Jordan® proposed a model which was
able to generate learned time series containing concurrency
by adding feedback and internal state to multi-layered neural
networks. The composition of this model is shown in Fig.3.
State unit group explicitly represents internal state. There-
fore, time series can be generated by computing the next
output using the internal state as input. Also, as the com-
putation of output is basically the feed-forward type, the
time series given as a teacher signal can be learned with the
use of the error back propagation method.”

The advantage of this model is the capability of generat-
ing concurrent action sequences against the teacher signal
which only gives sequential relations. This is because the
state which is close in time has similar representation (the
humming distance is close) by the interpolation capacity of
the error back propagation method and by the work of the
feedback loop. For example, the unit taught “1”” at a certain
timebecomes activated partially (for example, at 0.8) before
and after that time. Furthermore, Miyata® modeled the
learning history of motion sequences by combining Jordan’s

Interpretation Network

Input Internal Output
units units units
Environment RN et T ner Environment
| Output e Intenal | Input
: units > units units ,
N M odelofworla ....................... :

Fig. 2. The model of mental simulations ¥
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model in two serial lines. Yet, in Jordan’s model, the con-
straint of seriality which cannot br executed concurrently is
explicitly given as a teacher signal. Therefore, even in the
case of generating sequences for the same plan, re-learning
becomes necessary when action constraints differ.
Moreover, as the model uses the error back propagation as
it is, learning is difficult for complicated action sequences
and the setting of parameters contained in the model is
extremely difficult.

Therefore, the network in this paper is structured
beforehand into a part which generates action sequences
which including concurrency (concurrent action generation
part) and a part which modifies the sequences in compliance
with the constraints required from the problem region (con-
straint representation part). Learning occurs for each part,
and both parts are combined at the execution time.

In this method, the constraint representation part depend-
ent on regions can be switched over as a module, and it
becomes possible to use that part as the motor schema of
other regions (other environment, other task condition and
other purpose).

3. Structured Neural Network for Motor
Schema

This model is composed of a concurrent action genera-
tion part and a constraint representation part (Fig.4). The

Plan

units
plan

Hidden Qutput
units units
> output

State
units

Fig. 3. The sequential network ¥

genera.tlon of concurrent action sequences

concurrent action generation part learns the sequential rela-
tion of action sequences for a certain plan and generates
action sequences which contain concurrency (refer to
Fig.1(a). The constraint representation part learns the con-
straints dependent on the problem region, gives inhibition
to the output of the concurrent action generation part which
does not satisfy the constraints, and modifies it to satisfy the
constraints. The input having the form of representation,
which is irrelevant to the region, is transformed into a form
which corresponds to thedisired signal of the motion system.

In this paper, a study is made of the problem described
as follows:

1) There is no exchange of the sequential relation of each
action. For example, the sequence of the letter line is
given as the spelling of a word.

2) There are actions which can be executed concurrently and
those which cannot. In typing, for example, plural letters
assigned to the same finger cannot be typed concurrently.

3-1. Concurrent Action Generation Part

In this paper, a neural network with the same construction
as Jordan’s model® is used as the concurrent action genera-
tion part, where it is given only the sequential relation of
actions by the teacher signal and the constraints for concur-
rent execution are not given. As the result, the concurrent
action generation part comes to generate perfectly concur-
rent action sequences. Therefore the non-linearity of learn-
ing and the difficulty of setting parameters which Jordan’s
model entails are avoided to a certain extent.

Figure 4 shows the construction of the concurrent action
generation part. The input to the plan unit group is given
as a vector p_) (unit vector). Output vector element x,; of
output unit group at time n expresses the activation value of
each action and takes the value from O to 1.

Output vector x_) at tlme n is obtained as the function of
vector p—> and state vector g, 57 of the state unit group,

e s S (1)

xn:f( ns

where the function f_> is represented by the multi-layered
network from the plan unit and condition unit groups to the
output unit group. The action of each unit is defined as
follows. Here, u,;, v,; are the input and output of unit i; w;;
is the weight of the link from unit j to unit i.

satlsfactlon of sequential constraints

‘plan[ Plan”|P - Difference -
: units n units Wyits t
State |5, “>Hidden Output +1 Middle [ Wout|Output ‘/—'jn—,

units units units :

uniU units
W

Fig. 4. The structured neural network for motor schemas
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‘: g A {(plan unit)
Ui = e (state unit)
2 Wi (hidden unit, output unif)
j
......................... 2
Uni (plan unit, state unit)
y, ;= 1 . . .
hidd t, output unit
15 o (hidden unit, output unit)
......................... 3)

In other words, each unit of the plan unit group and state
unit group outputs its input as it is, and each unit of hidden
unit group and output unit group outputs activation value in
accordance with Sigmoid-type characteristic functions.

State 5 s, of the state unit group is renewed as the follow-
ing equation with the use of feedback from itself and output
from one unit time before,

................

where, Ef =[1, 1, ....., 11", and it is the weight of the state
unit’s self feedback loop.

The learning rule of this model is based on the error back
propagation method;” and, as it contain a feedback loop and
state units, the following method is used:

1) The weight of each link is initialized by random num

bers.

2) The procedures of the following (2a) to (2f) are taken

for each plan

(2a) Plan input p given to the plan unit group and at

the same mme the state unit group is initialized.

2b) Output X, = f (S p) is calculated .

(2¢) Error back propagation learning is performed with

the use of output x_,,) and a teacher signal t, for
the time n and the weight of link w;; is renewed.

oF dv,;
Awy = na du&
nl (3

Here, for the output units,
Vi {n,:' (En.i = 0: 1)

= {max{(v,;—0.8,0) (6)
(t,; : imperfect activation value)

oE
avn’,-

and, for the hidden units,

aE z aE dvn ,k

avn ; avn k dﬁn,&

If t,; is the teacher signal which represents imper

fect activation, learning is made so that

outpu[ becomes less than 0.8.
(2d) x)= f'ﬁszﬁ? is obtained with the use of the new w;.
(2e) Internal state s_),m is renewed by equation (4).
(2f) (b) to (e) are repeated until the sequence of the

teacher signal for the plan comes to an end.
During
the interval, ,5')15 kept fixed.
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3) Among the plans learned in (2), the leaming procedures
(a) to (f) are applied again to the one having the largest
error (reinforced learning).

4) 2) to 3) are repeated for all the plans, times and actions
until error becomes smaller than &.

Here, the following values are used as teacher signals.
(i) Action to be perfectly activated in plan 1, time n:

(ii) Action contained in plan I:
0, = =(imperfect activation value) (m=n)
(iii) Action which does not appear in plan L:
0.=0m=1,2,-,N)

(iv) All the actions at the time of starting and finishing
plan:

tm,:'= O(m= 17N)

For example, as for the plan of “abc”, the sequence of
the teacher signal shown in Fig.5 is given. The mark * in
the figure shows imperfect activation value.

3-2. Constraint Representation Part

When a motion such as typewriting action is considered,
the action of typing some letter allocated to the same finger
have the constraint of impossibility of concurrent execution.
In other words, in the action group corresponding to the
same output organ of the motion system, it is necessary that
the action which has the strongest activation value be ex-
ecuted and other actions inhibited.

As such a constraint (different from the concurrent action
generation part) need not give consideration to dynamics by
time, it can be achieved by the mapping of multi-layered
networks. However, it is highly likely to take time for learn-
ing and of having the learning fall into the local minimum,
as the nonlinearity of mapping is considerably strong.
Therefore, to make learning efficient it is separated info a
part which gives constraint and one which makes the trans-
formation of representation; the network is structured into
each part beforehand. Figure 4 shows the composition of
the constraint representation part. In the figure, the con-
straints from the problem region is represented by the map-
ping from an input unit group to a middle unit group, and
the transformation of representation is made by mapping
from the middle unit to the output unit group.

A difference detection unit group is prepared for all the
input unit pairs, and the difference diff;; of activation values
x; and x; of the unit pairs is detected.

m= 1 2 3 4 5 6 7
a: 0 * 1 * * * 01
b: 0 — ix| — {#f = {1] — lx{ — Ix] — |0
¢: 0 * * * 1 * 0
d: 0 0 0 0 0 0 0

Fig. 5. An example of teacher singnals for concurrent action
generation part
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iee 0 (if xs Xl)
dlffij = {1 Gf x> -x;‘) ............. (8)

The middle unit group forms subgroups corresponding to
the output unit. If there is a unit with a stronger activation
value than other units in the same sub group, other units
receive constraints from the difference detection units
through wgg,

X = min{x, + ZWdiffk,ijdiffirl 0)

ij

Where, Wy i SO is the weight of link from difference
detection unit ij to the middle unit k and represents the
constraint among the actions in the sub group. The output
unit group receives x;” through w,,, and outputs the sum y;

The action of the constraint representation part is ex-
plained with the use of Fig.6. Action a and action b cor-
respond to the same unit Oy, and action ¢ corresponds to the
other output unit O,. Here, the activation values of each
action given by the concurrent action generation part to
input unit are a=1.0, b=0.8 and c¢=0.6. In this case, a-b, a-c,
b-c become activated out of the difference detection units,
and middle unit b’=0. Yet, there is no constraint between
unit 2’ and ¢’ as the link is not connected (wy=0), and the
input value is transmitted to the activation value of middle
unit as it is. These activation values are then transmitted to
the output unit through link wo,.

As for the learning rules of the network, the following
method is used:

(1) Wy, Wou are set to 0.

(2) Procedures (2a) to (2b) are applied to all actions
which are output from the concurrent action genera-
tion part. -

(2a) Unit vector x©, which represents action ¢, is given

to the input unit group, and teacher signal 9 for ¢

e ¢ eXcitatory link
: inhibitory link

Difference
units

Fig. 6. The network structure for the constraint representation part
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is given to the output unit group.
(2b) W, is modified by the use of equation (11). At this
.- . e
time, x =x" as wyg are all 0. By this modification,
the middle units are subgrouped implicitly.

(3) The procedures (3a) to (3c) are applied to all the
actions.
(Ba) @ is given to the input unit group, and output ¥ is
calculated.
(3b) y; at this time is back-propagated to the middle unit
through Wour ije

(3c) Here, action 1 (which becomes d;=0) belongs to the
same subgroup as action ¢, and thus has the
possibility of being inhibited by action ¢. To

represent the constraint, wy «; is renewed
according to the following equation.

- -1 (diﬂ’;jdk-‘;é 0)
A = { 0 (iffyd,= 0)

By the above procedures, the output of the concurrent
action generation part is modified, and the transformation to
the representation corresponding to the desiored value of the
motion system becomes possible.

4. Application to Typewriting Action

As an application example of the proposed model, the
generation of motor schema concerning typewriting action
was attempted.

Table 1 shows the input/output of typewriting action. As
for input of the plan of the concurrent action generation part,
M kinds. of words are assumed. The output action of the
concurrent action generation part (which becomes the input
of the constraint representation part) is to be the action of
typing a certain letter (26 alphabetical letters). As for the
constraint representation part output and teacher signal, the
target position in the task coordinates of each finger and key
hitting instruction considered. Here, as forefingers require
x and y coordinates and fingers from middle fingers to little
fingers require only a y coordinate, a total of ten positions
for right and left hands are output. Table 2 is the alphabet
corresponding to each finger. The letter corresponding to
one finger cannot act concurrently. It should be noted that
the motion control of moving fingers to the target position
is not treated here. Key hitting instruction units represent
the timing of typing by fingers. When the activation value
of this typing unit becomes 1, actual typing action is
generated. Here, the parameters of the concurrent action
generation part is u=0.8, n=1.0, €=0.01, and 52 pieces of
hidden units were prepared.

A part of the simulation results with the numbers of
words M=10 is shown hereunder. The words used are 10
German numerals, “ein”, “zwei”, “drei”, “vier”, “fuenf”,
“sechs”, “sieben”, “acht”, “neun”, and “zehn”. First, the
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outputs for a word “‘neun” after learning without reinforced
learning (refer to 3.1) in the concurrent action generation
part are shown in Fig.7. Fig.7(a) shows the output unit of
the concurrent action generation part, (b) shows the middle
unit of the constraint representation part and (¢) shows a part
of the output unit of the constraint representation part.

In Fig.7(a), the activation value of unit ‘n’ is 1 four times
in succession. As a result of this, in the middle unit group
of the constraint representation part, unit ‘n’ inhibits unit ‘u’
(Fig.7(b)). Therefore, a wrong typing action sequence is
generated(Fig. 7(c)).

Simulation was repeated with the use of reinforcement
Jearning based on the learning rule of the concurrent action
generation part. Figure 8 shows the result of leaming
{about 6000 times). As the result of reinforcement learning,
the output unit ‘n’ of the concurrent action generation part
decreases once after it takes the largest activation value, and
finally takes the largest value again (Fig.8(a)). Therefore,
in the middle unit group of the constraint representation part,
the part where unit ‘v’ inhibits unit ‘n’ appears contrary to
Fig.7(b), and, as a result, the correct typing action sequence
is output. As for the other 9 words, correct typing action
sequences were obtained.

From results of the above simulation, it became clear that
the model proposed in this paper can represent seriality and
concurrency of typewriting action satisfactorily, and can
generate efficient typing action sequences. In this model, it
is not necessary to prepare a network structure correspond-
ing to each word beforehand, and arbitrary set of words can
be stored by learning. Furthermore, when the learning of
the constraint representation part is completed once, the
constraint of the motion sequences concerning typewriting
action can be represented in a generalized form; and the
model can generate all lines of letters.

Table 1 Input and output of typing actions

Concurrent action
generation part

Constraint repre-
sentaton part

tion (26 kinds)

Input Words (M kinds) Letter typing ac-
tions (26 kinds)
Qutput Letter typing ac- Finger positions

(10)

Key hitting instruc-
tion

Teacher signal

spelling of words

Finger position for
letters

Motor Schema Model Vol.2-263

5. Conclusion

In this paper, the realization of an efficient motor schema
combining seriality and concurrency with the use of a neural
network was explained. The neural network which divided
its structure into concurrent action generation and constraint
representation parts and its learning rule were proposed, and
a motor schema of typewriting action was constructed.

unit n

unit e

unit u

0.

(a) output units in the generation part
of concurrent action sequences

unit n’

uait €’

unit v’

{b) activation values of Middle units

y,u
b, j
n, m

right index y

left middle y

(c) output action sequences of the motor schema

Fig. 7 Simulation results for a word "neun” {without
reinforcement learning}

Table 2 Fingers and corresponding letters

Left hand Right hand
Index finger | Index finger
Little finger Third finger Middle finger X= X= Middle finger | Third finger Little finger
Yy 0 +1 | -1 0
+ 1 q w e r t y u i o p
o 3 f g h i k !
-1 X v b n m
Journal of Robotics and Mechatronics Vol.2 No.4 47



Vol.2-264 T.Tsuji, Y. Ishida et al

unit n

unit e
it 1.

unit u
0.

{(a) output units in the generation part
of concurrent action sequences

unit n’

unit ¢’
1.

it w’
uni 0.

(b) activation values of Middle units

y,u
h, j
n,m

right index y

left middie y

{c) output action sequences of the motor schema

Fig. 8. Simulation results for a word "neun” (with reinforce
ment learning)

This model, by the exchange of the constraint repre-
sentation part as a module, can correspond to plural problem
regions. For example, action sequences corresponding to
the spellings of words are generated in the concurrent action
generation part, and the action sequences are modified to
the motion command for several tasks such as typewriting,
handwriting, pronunciation, etc. (Fig.9). Conversely, once
the constraint representation part concerning a certain prob-
lem region is obtained by learning, the learning of the con-
current action generation part only suffices if a new plan is
given. The flexible planning capability was obtained by
structuring the network.

Nevertheless, some problematic points remain in this
model.

1) It takes long time to learn concurrent action generation,
and learning has the possibility of running into a local
minimum, which may be true of the model which uses
the error back propagation method in common. In this
paper, this problem was settled to a certain extent by
introducing reinforcement learning into learning rules,
but there is no guarantee that this leaming always
produces the most suitable solution, so further superior
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spell- type-
ing writing

manu-
script

Fig. 9 The hierarchical structure of motor schemas

learning rules must be studied.

2) The kinds of constraints which can be represented in the
constraint representation part are limited. In this paper,
the constraint from problem regions was realized by im-
bedding the property of constraint into the structure of
the model beforehand, which simplified learning. On
the other hand, the problem region which is made a sub-
ject becomes limited to a considerable extent. It is thus
necessary to study the structure of a model which can
represent constraints from various regions.

3) The action sequence contained in the plan is not exchan-
geable. In this paper, only the action sequence deter-
mined by the object of the plan is treated and an
exchange of action sequence is not considered.

The above problems must be studied in the future fo

‘achieve a wider range of motor schema and to apply it to

robot control.
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