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SUMMARY

This paper describes a method to esti~
mate the motion intended by an amputee from
his EMG symbols. This is one of the import-
ant abilities to be provided by the amputee-
prosthesis interface within the multifunc-
tional powered prosthesis. To make the in-
terface easy for the amputee to use, the
measurement of EMG should be simplified as
much as possible. Up to now, the function
discrimination by the surface EMG has been
employed, where a particular muscle must be
specified for the EMG electrode. This im-
poses a restriction in the electrode place-
ment, and restricts the function discrimina-
tion ability. From such a viewpoint, this
study aims at the development of the discri-
mination method, where the electrode loca-
tions are made flexible by utilizing
the cross~information among the electrodes
as well as the amplitude and frequency char-
acteristics of the EMG. The method proposed
is a combination of the multidimensional AR
model and the discriminant function. It is
shown by the experiment for 3 subjects and &
electrode locations that the proposed method
can discriminate, with the accuracy above 93
percent, 6 motions of forearm and hand,
using 4 pairs of electrodes and EMG for 100
ms after motion generation. Thus, the dis-
crimination proposed in this paper can sim—
plify the electrode placement, and realize
a high discriminating ability.

1. Introduction

One of the most important problems in
the powered limb prosthesis is the acquisi-
tion of the control signal. From an ideal-
istic viewpoint, the prosthesis control
matched to the central nervous motion-control
svstem of an amputee can be realized if
the control signal is obtained directly from
the afferent nerves of the amputee.
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As far as such an ideal method is dif-
ficult to realize, the electromyograph (EMG)
is one of the most promising control signal
sources, It is a trace of the electrical
activity of the neuromuscular system. Con-
sequently, one can expect that a natural
feeling of control close to that of the
original limb can be realized by using EMG
from the muscle, which is left in the
amputee. Especially, the surface EMG has
a feature that it is easy to measure without
any danger.

On the other hand, EMG is a complex
of a large number of action potentials of
muscle fibers. It contains considerably
higher frequency components [l1]. Conse-
quently, to utilize EMG as the control sig-~
nal for the limb-prosthesis, there must be
a certain amputee-prosthesis interface. Fig-
ure ! is an example of the amputee-prosthe-
sis interface in the multifunctional powered
prosthesis. i

EMG is observed from the muscle left
in the amputee, and the motion intended by
the amputee, such as flexion, extensionm,
pronation and spination, is estimated. In
parallel to the estimation, the signal to
drive and control the prosthesis {correspond-
ing to the muscle force) is produced from
EMG. The estimated motion is realized by
the proportional control by the manipula-
tion signal [2, 3]. On the other hand, the
signal corresponding to the position, veloc-
ity or sensation of force are fed back to the
amputee in the form of a tactile sensation,
a visual sensation or an electrical stimula-
tion.

This paper discusses the motion esti-
mation. EMG information which can be used
in the estimation are the amplitude and the
frequency. The amplitude pattern of EMG
exhibits features corresponding to various
motions, since different muscles work with
different degrees of contraction, depending
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Fig. 1. Amputee~prosthesis interface.

on the kind of motion. On the other hand,
the frequency pattern also exhibits fea-
tures corresponding to various motions,
since the muscles have different frequency
characteristics [4, 5] and the transfer
function of the tissue depends on the dis-
tance between the muscle and the electrode
{1]. Several studies have already been re-
ported on the estimation of the motion util-
izing those EMG {6 - 10].

Graupe et al. modelled EMG measured by
a pair of electrodes by an AR model, and pre~
sented a function discrimination method util-
izing the parameters depending on the kind
of motion [6]. Their method is based largely
on the frequency characteristics of EMG.
Yamada et al. proposed the function discrimi~
nation by the discriminant functions, where
the rectified integration of EMG from sev-
eral electrodes is used as the feature vec-
tor [8]. This method utilizes both the
amplitude and the frequency data by employ~
ing a bandpass filter.

However, those methods specify a par-
ticular muscle to place the electrodes, and
the electrode locations must be determined
carefully. In the actual use of the prosthe-
sis, inevitably there are produced a devia-
tion of the electrode location or the differ-
ence of the muscle characteristics due to the
different amputation. Consequently, there
must be a means to minimize those effects.

From such a viewpoint, this paper aims
at the function discrimination, where the
electrode locations are made relatively flex-
ible by utilizing the cross-information
among the electrodes as well as the ampli-
tude and frequency characteristics. The
proposed method is a combination of the multi~
dimensional AR model and the discriminant
function. The frequency characteristics,
including the cross information of EMG are
utilized by the multidimensional AR model,
and the amplitude patterns of EMG are util-
ized by the discriminant function.
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In the following, Sect. 2 describes
the discriminating algorithm. Section 3
discusses from experimental viewpoint the
effects of EMG observation time and the
order of the AR model on the discriminating
ability. Section 4 describes the simulation
experiment for the prosthesis to evaluate
the effect of the electrode placement and
the difference of subjects.

2. Function Discrimination by
Multichannel EMG
2.1 Multidimensional AR model

It is noted that the frequency charac-
teristics of EMG exhibit different features
depending on motions, and EMG from several
electrodes are modelled by the multidimen~
sional AR model [1l]. 1t is assumed that
EMG is a stationary random signal with mean
0. Let EMG signal‘XW(ﬁ),generatedwithnwtion

m{m=1,2, +++, M, where M is the number of
different motions which are considered), be

Xm(t)=-é}Am(é)Xm(t-‘k)-%-en(i) (0

Letting the number of electrode pairs
be L,.Xh(t) is an L-dimensional column vec-

tor; p is the order of AR mode1;4Am(k) is

the (I x L) AR coefficient matrix of kth
order; em(t) is the prediction error vector.

It is assumed that em(t) is an L-dimensional
white Gaussian vector satisfying
Elen(1)]=0 (2)
Elen(t)-en(s)]= Vndis 3
where
en(t)=[em(t) ent)en())”

E[em(t)em(!)}-“E[emz(z‘ )C’m.’.(f)}
Vo= . . .

6es={

The superscript 7 denotes the transpose.

Elen)em ()} Elen(t)enlt)]

1 (t=s)
0 (t+5s)

All the information contained in the
EMG signal.Xﬁ(t} is represented by the AR
coefficient matrix4Am(k) and the covariance
matrix P% of the prediction error. Espe-

cially, the nondiagonal elements of A (k) and



V_ represent the cross information among the
m

electrodes.
The AR coefficient matrix.Am(k) is

estimated so that the mean square of the
prediction error,

E-=E{el{t)enlt)]=trace Va (4)

is minimized. Thus, Eﬁ represents the extent

of fit to the AR model to EMG.
2.2 Discriminant function

The variance of the prediction error
em(t) of the AR model reflects the amplitude

characteristics of EMG signals. Since EMG
exhibits different features., From such a
viewpoint, the discriminant function is con-

structed using the variance E{emi(t)] of the

prediction error for each electrode pair as
the characteristic values.

The following normalization is made to
eliminate the effect of the muscle force on
the pattern variation:

St=Elenl(OVEn (i=1 2.+ L) (5)

L

2SP=10

i=1

In general, if the number of motions to be
discriminated is ¥, there must be constructed
MM - 1)/2 discriminant functions., When M is
increased, however, a long computation time
is a problem. From such a viewpoint, a
method is employed in the following, which
can discriminate M motionsusing a fewer num-
ber of discriminant functioms [12].

Assume that nl, nz, LN nM data were

obtained for different motions. Let the nth
characteristic value of the motion m be Sé?}
(n=1, 2, 1, 2, =++, LY. Then

the within-group square-sum, product-sum
matrix W= (k}j), representing the variance
(22

sy, 7%ﬂ; 1 =

in a motion, and the between-group square-
sum, product-gum matrix B = (Bij)’ repre-~

senting the variance among motions, are
given by

M onm

5 (Sntm= S S, = § )

1n=)

W, = (6)

N

M

Mz

Buz ‘nm(S“(my__S")(S:(m)__S‘j) (7)

m

“
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where

5 - s
S =3 2.5 /N total mean

m=1

M
N= 3 nn : total number of trials

m=l

The aim is to determine X discrimi-
nant functions ZZ(Z =1, 2, -+, X):

Z=FadS=8) (=1 2 = K) 8)

To simplify the discrimination procedure,
the within group square sum of Zz.should be

small and the between—group square sum
should be large. From such a viewpoint,
the coefficient as. is determined by the

condition that the ratio of the between-
group square-sum to the within-group square
sum is maximized. Let the within-group
square~sum of ZZ be SWZ’ and the between-

group square-sum be SBZ:

M o nw -
Swe= m{} 2 (an‘m“ Zy

ja=}

=Ziazsﬂz;ij (9)

RS FEH

Sa= W‘Z:nm(z—:"’”’*ft ¥

Lt
y Eauau&;

ii=i

(10
Differentiating 6 = SBZ/SWZ by a;., and

equating the result to 0,

(B~ 8W)a,=0 (11)

For this equation to have a solution other
than a = 0, there must hold

|B—8W|=0 (12)

or

[W-'B—6Il=0 (13)
Consequently, 6 is an eigenvalue of the
matrile-HR.

Both Wand B are [ x L matrices; W is
nonsingular, and the rank of B does not ex-
ceed the degree of freedom (¥ -~ 1) among the

groups. Consequently, the rank ofFV‘lB does
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not exceed min{Z, # - 1}. The coefficient
vectors az of the discriminant function are

the right eigenvectors arranged in the de-
scending order of the eigenvalues. If the
eigenvalues satisfy ei = Sj, the correspond-

ing right eigenvectors a; and aj are orthog-
onal, indicating that Zi and Zj are uncor-

related in the group [12].
2.3 Discrimination algorithm

The discrimination algorithm "is com—
posed of the model identification and the
function discrimination. The model identi-
fication determines the parameters for each
motion needed in the discrimination. The
function discrimination assumes that a par-
ticular motion among the set of considered
motions is intended by the controller. EMG
for that motion is compared with the model of
each motion, and the one with the best fit is
adopted.

(1) Model identification

The controller is asked to perform ¥
considered motions by My times for each. EMG

signals are recorded. Then using the multi-~
dimensional Ar model {[Eq. (1)}, AR coeffi~-

cient matrixx&m(k) (m=1, 2, «++, My k=1,
2,

=1, 2, *++, ¥) of the prediction error are
estimated. The discriminant functions are

+++, p) and the covariance matrix P%(m ’

determined using the variance Sém) [Eq. (5)]

of the prediction error for each electrode
pair:

thim: lilau(f)‘.’jm"" ge) (14)
e, K}

(m)

For each motion, the mean ZZ

(=1 2% o ome =102
and the

within-group variance ¢ of Z;?)
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Zl‘m)‘:‘l %“ij‘m (15)
Nm iml
~--._.}:..._...__. L {m} 'lm.z
ey ey PP UL A (16)

({:]_’ 2, wes, K)

are calculated. The mean AR coefficient
matrix44m(k), the total mean Si (it =1, 2,

*++, L) of the characteristic value, the
transformation vector az, the mean of the
z{™

discriminant function , and the within-

group variance of the discriminant function
o, are stored in the computer (Fig. 2).

They are used in the function discrimination.

(2) Function discrimination

It is assumed that the amputee intends
to make one of ¥ motions. The EMG signal
X(t) is observed and compared with the AR

.model for each motion, which is determined

by the model identification procedure. The
prediction.Xﬁ(t) for X(t) is given as fol-

lows using the matrix.fm(k):

Znlt)== 2 Aulb)X(t = 4)

{m=1, 2, «, M) (17)
The prediction error ém(t) is given by
Ealt)=X(1)— Xnalt) (18

gm(t)::"{éml(t)émz(t)"'é‘ml.(t}}r

Letting the number of data be VN, the
square-sum of the prediction error E% is

given by

N

En=3 3 ani(2)

i=itmpel

(19)
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Since the AR coefficient matrix for each
motion is determined to minimize the mean
square of the prediction error, one can con-
clude that the fit to the model is better if
Qﬂ is smaller. From such a viewpoint, the

square sum of the prediction error E% is

calculated for each motion model using the
observed EMG X(z), and the motion to_con-
sider is limited to ¥* with smaller Em'

Then the discriminant function is calcu-
lated.

Since the frequency characteristics of
EMG do not depend on the muscle force 'level
{13, 14], the processing up to this point
does not depend on the amplitude of EMG
(i.e., the force of the controller). The
processings can be performed in parallel for
different motions, thereby reducing the com~
putation time.
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Using the characteristic values of Sé )
1, *o+, L;m = MI’ Mz, ey M&*) of M*
motions with smaller ém, the discriminant

?

(m =

functions
Z[(m)’

- 4 - -

ZiM=2au(Sm=S) U=1 2, =, k) (20
are calculated. The motion with the minimum
Mahalanobis generalized distance d from the

(m)

mean pattern ZZ cf each motion is se~

lected. Mahalanobis distance generalized

distance is the distance defined consider-

ing the channel variance of the discrimi-

nant function. It is defined as follows:
X

d"’”: 2 {( Z’"‘(m_ Z?i(m)z]/a‘z

1=l

21



Figure 3 is an illustration of the dis-
criminant function for electrode pairs L
being 2. Figure 3(a) is the characteristic
values obtained from the prediction error of
the AR model. After o trials for each

motion, a cluster is formed on the plane of
the characteristic value for each motionm.
The within~group variance [Eq. (6)] indi-
cates the variance within each motion, and
the between-group variance [Eq. (7)] indi-
cates the variance among different motions.
To simplify the discrimination between
groups, the ratio of the between-group vari-
ance to the within-group variance is maxi-
mized.

Using thus determined orthogonal trans-
formation vector ass the characteristic

value is converted into the discriminant

function (b); Z(m) is the mean of each

motion;42(1) and.Z(z) indicate the discrimi-
nant values which fit well to the AR model.

In this case, the mean‘Z<l) of motion 1 has
less distance, and motion 1 is decided as
the motion intended by the controller. It
should be noted that the within-group vari-
ance of the discriminant function for each
motion is assumed as constant, independent
of the motion. This point will be discussed
in the next section.

Figure 4 is the block diagram of the
motion discrimination. It is assumed that
the motion is intended when the EMG ampli-
tude exceeds a certain threshold 7. Then
the function discrimination is started. It
is possible to regard the rest state as a motion
and it may be included in the motions to be
considered.

3. Function Discrimination Ability and
Effect of Parameters

This section discusses the discrimina-
tion ability of the function discrimination’
by multichannel EMG described up to the pre-
vious section. A basic experiment was per-
formed. The proposed method includes sev-
eral parameters. Among those, the number of
data in the function discrimination, the
order of AR model, and the number of trials
in the model identification are considered
in the following. Those parameters must be
set so that the discrimination rate is high
and less time is required for discrimina-
tion. In general, the accuracy of the esti-
mation is improved by increasing the number
of data, the order of the model and the num-
ber of trials. In this case, the discrimi-
nation rate is improved, while the time for
discrimination is increased. Thus, there
must be a compromise in the choice of those
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parameters. From such a viewpoint, the re-
lation between the discriminating ability
and the parmeters is examined experiment-
ally. Then the parameters are set from a
practical viewpoint.

3.1 Experimental conditions

The conditions of the experiment were
as follows.

(1) Motions

There are six motions: palmerflexion,
dorsiflexion, pronation, supination, grasp
and open.

{(2) Sites of measurement

Four pairs of electrodes were attached
with 90-deg difference on the forearm, 7 c¢m
from the elbow joint (Fig. 5). The elec-
trode is a concentric disposable type with
the diameter of 1.5 cm (Nihon Kohden Co.).
Bipolar lead with electrode spacing of 2 cm
was employed. EMG in each channel is sent
from the medical telemeter (Nihon Kohden
Co.), amplified and passed through the low-
pass filter (first-order analog filter with
cut-off at 1 kHz). The signal is A/D con-
verted with the sampling frequency of 2 kHz.
The result is stored in the digital computer
as the data file.

{(3) Subject

One adult male (normal).

(4)

Parameter in model identification
2000 data were -prepared for each chan-
nel. The order P of the AR model was set

as 2, 4, 6 or 8. The number of trials for
each motion n, was set as 5, 10 or 15 (m =1,

2, *+*, 6). The data were observed for 1l s
(2000 % 0.5 ms). The number of data in the
model identification was set as a rela-
tively large value based on the following
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observation. In the preliminary experiment,

if the number of data is decreased, the esti-

mation accuracy of the model is degraded,
affecting the function discrimination.

(5)

The number ¥ of data per channel was

set as 100, 200, 300, 400 or 500 (the obser-

vation time being 50, 100, 150, 200 or 250
ms, respectively).
observed fifty times. Using the square sum
E% of the prediction error, the number of

the motion to consider M* was limited to 2,

and the discriminant function was calculated.

Under those experimental conditions,

EMG was observed, and the function discrimi-

nation was performed. LWR algorithm {I1]
was used in the estimation of the AR model,
and the Everline method [14] was used in the
solution of the eigenvalue problem of Eq.
(13).

3.2 Experimental result and analysis

Figure 6 shows the relation between
the number of data in the function discrimi-
nation and the discrimination ability. The
abscissa is the number of data and the ordi-~
nate is the discrimination rate, which is
the ratio of the correct discrimination in
300 trials. In the future, the solid line
is the discrimination rate of the proposed
method, and the dashed line is the case
where the function discrimination is made
using only the AR model. The dot~dash line
shows the case where the discrimination is
made using only the discriminant function
with the square-sum for each EMG channel as

Function discrimipation parameter

For each motion, EMG was
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the characteristic value. The number of
trials in the model identification was 15
for each motion, and the order of AR model
was set as 4.

It is seen that the discrimination
rate is improved by 10 to 15 percent, com-
pared with the case where the AR model or
the discriminant function is used independ-
ently. It should be noted that AR model and
the discriminant function utilizes the fre-
quency and amplitude information of EMG,
respectively, while the proposed method
utilizes both the frequency and amplitude
information. From the viewpcint of reducing



the time for observing EMG, the number of
data should be minimized. It is seen from
the figure that although the discrimination
rate is improved by increasing the number of
data, the improvement is not very remarkable
for the number of data exceeding 200. This
corresponds to the observation time of 100
ms.

When the number of data is set as 100,
the discrimination rate is degraded drastic-
ally. This can be due to the following two
reasons. One is the degradation of the esti-
mation accuracy of the prediction square-
sum E% of error with the decrease of the

data. The other is the nonstationarity of
EMG immediately after the onset of the
motion. When the data are decreased, EMG
immediately after the onset of the motion
must be utilized, violating the stationar-
ity assumption in AR model. The data cannot
consequently be reduced further.

Figure 7 shows the discrimination rate
for AR model of orders 2, 4, 6 and 8. The
solid line is the discrimination rate of the
proposed method, and the dashed line is the
case where only the AR model is employed.
The number of data is 200, and the number of
trials is 25 for each motion in the model
identification. It is seen from the figure
that the discrimination rate is improved
with the increase of the order. When the
order exceeds 4, however, the discrimina-
tion rate is not increased remarkably. Con-
sequently, the order of 4 will be sufficient.

In general, AIC is used in the determi-
nation of the order of the AR model. By ap~-
plying this idea, the order is determined as
20 or more for EMG. On the other hand, it
is reported that the multiple correlation
coefficient between EMG and the value pre-
dicted by AR model saturates beyond the 4th
order [7]. AIC for the multidimensional AR
model is given by [11]

AIC(p)=In[det V(p)]+2pL*/N (22)
where p is the order of AR model, V is the
covariance matrix of prediction error; ¥ is
the number of data in the model identifica-
tion, and L is the number of channels {(num-—
ber of electrode pairs). In this case, N
= 2000 and L = 4. Consequently, the second
term in the right-hand side is considerably
small, having little effect on AIC., As in
this method, where the prediction error is
employed mostly rather than the AR coeffi-
cient, the multiple correlation coefficient
corresponding to the first term on the
right-hand side can be used as the criter-
ion for determining the order.

Figure 8 shows the relation between the
number of trials in the model identification
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and the discrimination rate. The number of
data in the motion discrimination is set as
200, and the order of the AR model is set
as 4. The solid line is the discrimination
rate of the proposed method. The discrimi-
nation rate tends to be degraded with the
decrease of the number of trials. This is
due to the degradation of the estimation
accuracy for each motion model.

In the proposed methed, it is assumed
that the within-group variances of the dig~
criminant function are constant, independ-
ently of the motion (2.3). As a result of
experiment, however, the within-group vari-
ances depend little on the kind of motion.
From such a viewpoint, the method based on
Mahalabinos distance of the discriminant
function with different within-group vari-
ances is also examined., The dashed line
in the figure indicates the discrimination
rate for that method.

When the model is estimated by 13
trials for each motion, the discrimination
rate is slightly better if the difference
of the variance is taken into consideration.
When the number of trials in the model iden-
tification is decreased, the discrimination
rate in the new method is degraded dras-
tically. This is due to the degradation of
the estimation accuracy for the variance
with the decrease of the number of trials.
Consider the case where the number of trials
is 5. Then in the method assuming the con-
stant variance, the variance is estimated
from 6 motion X 5 trials = 30 data. If the
different variances are assumed, one must
estimate the variance from 5 data for each
motion.

The number of trials in the model
identification does not affect the time
required in the motion discrimination, but
should be reduced as much as possible from
a practical viewpoint. From such a view-
point, it is desirable to assume that the
within-group variances are constant to re-
alize a higher discrimination rate. As a
result of experiment, it is indicated that
the discrimination rate of approximately
86 percent can be realized by the method
proposed in this paper, for 5 trials for
each motion in the model identification,
4th-order AR model and 200 data per channel
in the motion discrimination. The next sec-
tion describes the experiment for the actual
prosthesis control to verify the effective-
ness of the method.

4. Motion Discrimination Experiment
When the prosthetic hand is used, the
controller can determine the result of con-
trol in real-time by observing the motion



A block diagram of experimental ar-
rangements.

rig. 9.

of the prosthesis. From such a viewpoint,
the experiment was made by feeding back the
discrimination result to the subject. By
this scheme, the subject can utilize his own
learning and adaptive ability in the experi~
ment. The experiment was also made to exam-
ine the effect of the subject and electrode
placements, te indicate the discriminating
ability of the proposed method.

Figure 9 shows the structure of the
experimental set-up. EMG signals from the
surface electrodes are sent to the medical
telemeter and are amplified. The data are
stored in the digital computer through the
A/D converter. The result of discrimina-
tion is sent to the manipulator (MOVE MASTER
11, Mitsubishi Corp.), and the subject can
determine the result of discrimination by
the motion of the manipulator.

The conditions of the experiment were
the same as in Sect. 3.l1. Based on the re-
sult of the experiment in Sect. 3, the num-
ber of trials in the model identification
was set as 5 for each motion. The order of
the AR model was set as 4, and 200 data were
used in the motion discrimination. Three
adult males (normal) were employed as the
subjects. Two electrode placements were

“tried for each subject, and the discrimina-
tion rates were determined.

Table 1 shows the electrode place-
ments and the discrimination rate. The dis-
crimination rate exceeding 93 percent was
obtained for each electrode placement. Espe-
cially, the experiment with No. 1l is the re-
sult for the same electrode placement as in
the previous section. Table 2 shows the
discrimination for each motion. There is a
tendency that incorrect discrimination is
often produced by deciding the dorsiflexion
for open and the palmer flexion for grasp.
However, the discrimination rate of 96 per-
cent was achieved in total. This is an im-
provement of approximately 10 percent com-
pared with 86 percent in the previous sec-
tion, which is the result of feedback.

Table 1 also shows the result of dis-
crimination for the same EMG using only the
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(a) Experiment No. 1

(%3
-§

[——

«

(b} Experiment No. 2

Fig. 10. Coefficient matrices of AR model
(absolute values).
AR model. It is seen that when the elec-

trodes are close to each other (Nos. 2, 4
and 6), the discrimination is almost the
same as in the case where the AR model and
the discriminant function are combined.
The reason seems to be that EMG from the
electrodes close to each other have a high
correlation, and the cross information
among the electrode pairs are utilized
fully in the discrimination.

Figure 10 shows the absolute value of
the AR coefficient matrix. This is the value
obtained in the identification for palmer
flexion AR model of the first order, with
(a) for No. 1 and (b) for No. 2. It is
seen that the absolute values of the diag-
onal elements in the coefficient matrix are
nearly the same, but those of the off-diag-
onal elements are several to more than ten
times larger in No. 2. An exception is the
cross-term between electrodes 1 and 4, which
is decreased in No. 2 due to the larger dis-
tance between electrodes.

The asymmetry of Ar coefficient matrix
in (b) of the figure should be noted. It is
seen from the figure that (1, 2), (3, 2), (4,
2) and (4, 3) elements of the AR coefficient
matrix have larger values, while (2, 1), (2,
3), (2, 4) and (3, 4) elements are rela-
tively small. This indicates that the
source of EMG (major working muscle) is
close to electrode 2. Thus, the AR coeffi-
cient matrix contains the spatial information



Table 1. Function discrimination experiment
i Experiment No. 1 No. 2 No. 3 No. 4 No. 5 No. 6
i Subject T T Y Y K K
1 1 1 1 1
2 ) .
electrode ; 211 : 2 2
location - 41h J O O OO
3 3T
4 3 4
= @l proposed 96 97 93 986 98 95
= o~ method
W C
2 T3 AR model g2 99 87 94 90 94
= £
Table 2. Function discrimination
Correct answer
Experiment
No. 1 Palmer Dorsi=- , . .
flexion flexion Pronation Supination Grasp Open
Palmer
flexion 46 0 0 0 0 o
.é Dorsi-
= flexion 0 44 0 0 0 0
=
E Prona-
ke tion 0 0 50 1 0 0
o
2 Supina-
= tion 0 0 48 0
Grasp 1 0 50
Open 0 5 0 50 |{Total
Correct answer
(Z) 92 88 100 96 100 100 96
for the EMG source in its off-diagonal ele- 5. Conclusions

ment.

In contrast to the foregoing situation,
when the electrodes are far away, the dis-
crimination using only AR model (Nos. 1, 3
and 5) is lower by 4 to 7 percent than in the
case where the electrodes are close. On the
other hand, since the electrodes are far
away, the amplitude patterns of EMG reflect
well the different activities of the muscles
in each motion. This implies that the dis-
crimination by the discriminant function can
complement the degradation of the discrimi-
nation rate by the AR model. Thus, the
motion discrimination proposed in this paper
can provide a larger degree of freedom in
the electrode placement by utilizing the
cross-information among electrode pairs as
well as the frequency and amplitude charac-
teristics of EMG.
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The proposed method discriminates the
motion by EMG, utilizing the amplitude of
the prediction error of the multidimensional
AR model and the pattern produced by elec-
trode placement. The method has the feature
that a larger degree of freedom is provided
to the electrode placement, thereby reducing
the complexity in electrode attachment.

It is decided from the result of ex-
periment that the EMG for discrimination
should be taken 100 ms after the onset of
the motion. However, it is difficult to re-
duce the time for EMG observation further be-
cause of the nonstationarity of EMG. In the
practical control of the prosthesis, the
amputee performs a series of motions by
switching various modes. The nonstationar-
ity of EMG in switching the mode is inevit-
able. One of the interesting problems left



for future study is to use the adaptive
filter and similar ideas in the motion dis-
¢rimination, considering the nonstationarity
of EMG. The authors consider that the ex-

periment of prosthesis control by the amputee,

as well as the study of control system de-
sign including the proportional control by
EMG for the discriminated motion, are neces-
sary (2, 3].
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