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Abstract. Neural oscillators with a ladder-like structure is one of the
central pattern generator (CPG) model that is used to simulate rhyth-
mic movements in living organisms. However, it is not easy to realize
rhythmical cycles by tuning many parameters of neural oscillators. In
this study, we propose an automatic tuning method. We derive the tun-
ing rules for both the time constants and the coefficients of amplitude
by linearizing the nonlinear equations of the neural oscillators. Other
parameters such as neural connection weights are tuned using a genetic
algorithm (GA). Through numerical experiments, we confirmed that the
proposed tuning method can successfully tune all parameters.

Keywords: Central pattern generator (CPG), neural oscillators, pa-
rameter tuning, genetic algorithm, C. elegans.

1 Introduction

The central pattern generator (CPG) is a network of neuronal cells that con-
trol rhythmic reciprocating movements such as walking (humans), meandering
(snakes), and swimming (fish) [1]. The CPG generates rhythmic electric signals
via signal transduction between neurons. These internally-generated signals are
then modified on the basis of sensory information about the external environ-
ment, received via sensory neurons. A number of mathematical models, termed
‘neural oscillators’, have been developed to describe how CPG’s function [2], [3].

Recently, several research groups have simulated rhythmic movements in an-
imals using neural oscillators [3], [4]. For example, Ekeberg developed a neural
oscillator for the lamprey CPG which was then used to conduct swimming sim-
ulations [3]. Suzuki et al. constructed a neural network model of the nematode
C. elegans [4], [5] using Matsuoka’s neural oscillators and then used this model
to simulate rhythmic movements such as sinusoidal locomotion [4], [6].
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In all of these simulations, the neural oscillators had a ladder-like structure.
This structure incorporates a large number of parameters which makes tuning
difficult when attempting to reproduce rhythmic reciprocating movements on
a computer. Parameter-tuning rules and the methods for tuning for these pa-
rameters to generate the desired output have only been evaluated for neural
oscillators that are composed of a small number of oscillators [7], [8]. There
is currently no effective tuning method for setting the parameters of a neural
oscillator that is composed of a large number of oscillators. Thus, the parame-
ters included in neural oscillators that have a ladder-like structure are currently
tuned by trial-and-error.

In this dissertation, we propose an automatic tuning method for all parame-
ters included in neural oscillators with a ladder-like structure. In this method,
the tuning rules for both the time constants and the coefficient of amplitude are
derived by linearizing the nonlinear equations of neural oscillators. Other param-
eters, such as the neural connection weights, are tuned using a genetic algorithm
(GA) [9]. To avoid stagnation in GA-based tuning (‘tuning’ denotes ‘learning’
in a GA) for a large number of parameters, we propose a two-step GA. This
consists of a GA for the early stages of tuning and a GA for the mid-late stage
of tuning. The former GA reduces large scale learning errors and the latter re-
duces errors for each oscillator individually. We evaluate the effectiveness of the
proposed method through numerical experiments of rhythmic-signal generation
in C. elegans.

2 Characteristic Analysis of Neural Oscillators with a
Ladder-Like Structure

2.1 Neural Oscillators with a Ladder-Like Structure [2]

Matsuoka’s model is representative of neural oscillators that have a ladder-like
structure. This model is composed of excitatory oscillators (white circle in Fig. 1)
and inhibitory oscillators (gray circle in Fig. 1). An excitatory oscillator connects
with adjacent excitatory oscillators that are located in the Nth column of the
2nd row. An inhibitory oscillator connects with the corresponding excitatory
oscillator. The strength of signal transduction of the neural connection between
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Fig. 1. Schematic of the neural oscillator with a ladder-like structure
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two excitatory oscillators is represented by the connection weight wi,j (i �= j ∈
{1, 2, . . . , 2N}). Three types of signals are input to each excitatory oscillator from
adjacent oscillators. These include signals from excitatory oscillators, wi,jxj ,
signals coding for an adaptation effect from an inhibitory oscillator, bifi, and a
sensory feedback signal, si. bi is a fatigue coefficient and fi is an output of the
inhibitory oscillator. The output xi of the excitatory oscillator and the output
fi of the inhibitory oscillator are represented by the following equations [2]:

Tr i
dxi

dt
+ xi =

2N∑

j=1, j �=i

wi,jh(xj) − bifi + si (1)

Ta i
df i

dt
+ fi = h(xi) (2)

h(ε) = max(ε, 0) (3)
yn = αn (h(x2n) − h(x2n−1)) (4)

where, Tr i and Ta i are the time constants and h(ε) is a threshold function of
xj . yn is the total output of a pair of oscillators in the n (n ∈ {1, 2, . . . , N})th
column. αn is a coefficient of the output amplitude. To generate a desired output
for each pair of oscillators, wi,j , bi, Tr i, Ta i, and αn must be properly tuned.

2.2 Derivation of the Tuning Parameters Based on Oscillation
Analysis of the Neural Oscillators

Although proper tuning of the parameters included in a neural oscillator is im-
portant to generate the desired output, a detailed analysis of a neural oscillator
is difficult because of its nonlinear characteristics. Therefore, we evaluated the
relationship between the neural oscillator output and the input parameters. The
nonlinear equations that describe the neural oscillator are linearized at the equi-
librium position as follows:

First, equation (3) is approximated by the differentiable function h̃(ε) = ε/(1+
e−Tε), where , T is a constant with a large value. Under this condition, equations
(1) and (2) are linearized with an equilibrium position x̄i of dxi/dt = 0 and f̄i

of df i/dt = 0, respectively. Thus, equations (1) and (2) are represented by the
following:

Tβri
dxi

dt
+ xi =

2N∑

j=1, j �=i

wi,j h̃
′(x̄j)xj − bifi (5)

Tβai
df i

dt
+ fi = h̃′(x̄i)xi (6)

where, h̃′ = dh̃/dε. The time constants Tr i and Ta i are represented by Tr i = Tβri

and Ta i = Tβai. Tβ is a time constant that is common in all oscillators, and ri and
ai are coefficients of the time constant. In equation (5), si is deleted because of
the time-invariant input. To solve the simultaneous linear differential equations
(5) and (6), these equations are expressed using the following matrices:
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[
Ẋ
Ḟ

]
= 1

Tβ
A

[
X
F

]

A =
[
W′ B′

H′ T′

]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(7)

where, X, F, Ẋ, and Ḟ are matrices relating to the output of the excitatory
oscillator xi and the inhibitory oscillator fi. These matrices are represented by:

Ẋ =

⎡

⎢⎢⎢⎣

dx1
dt

dx2
dt
...

dx2N

dt

⎤

⎥⎥⎥⎦ , Ḟ =

⎡

⎢⎢⎢⎣

df1
dt
df2
dt
...

df2N

dt

⎤

⎥⎥⎥⎦ ,X =

⎡

⎢⎢⎢⎣

x1

x2

...
x2N

⎤

⎥⎥⎥⎦ , F =

⎡

⎢⎢⎢⎣

f1

f2

...
f2N

⎤

⎥⎥⎥⎦

W′, B′, H′, and T′ are matrices describing the neural connection weight wi,j ,
the fatigue coefficient bi, and the coefficients of the time constants ri and ai.
These matrices are represented by:

W′ =

⎡

⎢⎢⎢⎢⎢⎣

− 1
r1

w1,2h̃′(x̄2)
r1

· · · w1,2N h̃′(x̄2N )
r1

w2,1h̃′(x̄1)
r2

− 1
r2

· · · w2,2N h̃′(x̄2N )
r2

...
...

. . .
...

w2N,1h̃′(x̄1)
r2N

w2N,2h̃′(x̄2)
r2N

· · · − 1
r2N

⎤

⎥⎥⎥⎥⎥⎦
,B′ =

⎡

⎢⎢⎢⎣

− b1
r1

0 · · · 0
0 − b2

r2
· · · 0

...
...

. . .
...

0 0 · · · − b2N

r2N

⎤

⎥⎥⎥⎦ ,

H′ =

⎡

⎢⎢⎢⎢⎢⎣

h̃′(x̄1)
a1

0 · · · 0

0 h̃′(x̄2)
a2

· · · 0
...

...
. . .

...
0 0 · · · h̃′(x̄2N )

a2N

⎤

⎥⎥⎥⎥⎥⎦
,T′ =

⎡

⎢⎢⎢⎣

− 1
a1

0 · · · 0
0 − 1

a2
· · · 0

...
...

. . .
...

0 0 · · · − 1
a2N

⎤

⎥⎥⎥⎦

Therefore, solving for the output xi of the excitatory oscillator in equations (1)
and (2) is represented by:

xi =
4N∑

k=1

Cq kQi,ke
γk
Tβ

t
[
cos(

λk

Tβ
t) + i sin(

λk

Tβ
t)

]
(8)

where, Qk,k is an eigenvector of A, and γk (k ∈ {1, 2, . . . , 4N}) and λk are the
real and imaginary numbers of Qk,k, respectively. Cq k is calculated using the
initial values of xi and fi. A solution for xi can be expressed by an oscillation
equation that is a compound trigonometric function. The equation indicates
that the angular frequency of xi is decided by λk/Tβ. Thus, the relationship
between the input parameters and the output of the neural oscillator is partially
explained. In the next section, the tuning rules for the time constants and the
amplitude of the oscillatory output are derived based on equation (8).
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3 Parameter-Tuning Method of Neural Oscillators with a
Ladder-Like Structure

The parameters included in the neural oscillators are divided into the following
three groups: (1) time constants, Tr i and Ta i, (2) the amplitude coefficient, αn,
and (3) the connection weight, wi,j , and fatigue coefficient, bi. The parameters
in groups (1) and (2), but not (3), were derived using tuning rules that were
based on the oscillation analysis in 2.2. The parameters in group (3) were tuned
using a genetic algorithm (GA) [9].

In the proposed tuning algorithm, the tuning methods for (1) and (2) are
combined with a GA for (3). The parameters are tuned by both a local GA and
a global GA. The former is used for all parameters during the early stages of
tuning whereas the latter is used for a limited pair of oscillators at the mid-
late stage of tuning. This two-step tuning method is designed to avoid learning
stagnation during GA-based tuning. A procedure of the proposed parameter-
tuning algorithm is outlined below.

Step 0: Initialization
The parameters for each pair of oscillators are arranged in order (shown in
Fig. 2). All the parameters included in the neural oscillators are represented
as individual genes. A string including all the parameters (genes) of the neural
oscillator is treated as an individual in the GA. During the initialization step, P
individuals are produced and the initial value for each gene is given as a uniform
random number.

・・・ ・・・

NN - 11 2 j - 1 j j + 1

1st pair

The neural oscillator
Ta 2 α1

w1,2 w2,4 b 1 b 2・・・Tr 2Ta 1Tr 1

・・・ N th pair parameters1st pair parameters j th pair parameters ・・・

Fig. 2. A string of a GA

Step 1: Global Parameter-Tuning Using a GA (GA1)

(1) The tuning rule of the time constants
Based on the oscillation analysis in 2.2, the output-cycle length for neural
oscillators with a ladder-like structure is proportional to the time constants.
Thus, when a desired output-cycle length CD

s is given, the time constants
after tuning, T new

r i and T new
a i , are represented by:
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T new
r i =

CD
s

Cs
T old

r i (9)

T new
a i =

CD
s

Cs
T old

a i (10)

where Cs is the output-cycle length of the neural oscillators and T old
r i and

T old
a i are time constants prior to tuning. Thus, the time constants Tr i and Ta i

at the g (g ∈ {1, 2, . . . , G1}) th generation may be set to a unique value as
T new

r i and T new
a i that are calculated from equations (9) and (10) using T old

r i ,
T old

a i and Cs at the g − 1th generation.
(2) The tuning rule of the amplitude coefficient

In equation (4), the output, yn, of the neural oscillator in the n (n ∈
{1, 2, . . . , N})th column is calculated by multiplying the difference in out-
put between a pair of excitatory oscillators by αn. Thus, the error between
the total output yn of a pair of oscillators and its desired output yD

n is de-
creased by tuning αn. An amplitude error, eαn(l) (l ∈ {1, 2, . . . , L}) denotes
an output error between yn(l) and its desired output yD

n (l), where yn is dis-
cretized with L and the output from the lth sampling is yn(l). A square
summation of eαn(l) is expressed by:

Eαn =
L∑

l=1

(
yn(l) − yD

n (l)
)2

(11)

The amplitude coefficient αn that minimizes Eαn is given by the following
equation:

α new
n =

L∑

l=1

(
yn(l)yD

n (l)
)

L∑

l=1

(yn(l))2
α old

n (12)

where, α new
n is the amplitude coefficient after tuning and α old

n is the coeffi-
cient before tuning. yn is expressed by yn = α old

n (h(x2n) − h(x2n−1)). Thus,
the amplitude coefficient αn at the gth generation is set to a unique value
of α new

n that is calculated from equation (12) using α old
n at the (g − 1)th

generation.
(3) Genetic evolution-inspired operation for parameter optimization

An individual of a GA consists of a string arraying a set of parameters
included in the neural oscillators. For each GA generation, the adequacy of
each individual is evaluated to determine which individuals will be included
in the next generation. The function for evaluating error values during tuning
is defined by the following equation.

J =
1
N

1
L

N∑

n=1

L∑

l=1

∣∣yn(l) − yD
n (l)

∣∣ (13)
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where the desired output yD
n is given by an arbitrary function. The value of J

decreases accordingly with a decrease in the error between the total output
yn(l) of the nth pair of neural oscillators and its desired output yD

n (l). At
each generation, individuals are sorted into ascending order based on J . Jelite

denotes the smallest value of J that is obtained by an elite individual. Based
on this evaluation, individuals with greater diversity are produced by a series
of GA-operation with (a) selection, (b) crossover, and (c) mutation.

The above procedures from (1) to (3) are repeated until g1 reaches G1.

Step 2: Local Parameter-Tuning with a GA (GA2)
During local parameter-tuning using a GA (GA2), the parameters (Tr i, Ta i, bi,
αn, and wi,j) that are arranged for each pair of oscillators from the first column to
the Nth column are tuned individually. All parameters are tuned simultaneously
using GA1, whereas the tuning is limited to the parameters in one column of
the neural oscillator using GA2. During this process, the following procedures:
(1) tuning of the time constants, (2) tuning of the amplitude coefficient, and (3)
genetic evolution-inspired operation for parameter optimization, are conducted
for each column of the neural oscillator until g2 reaches G2. The parameters of the
first column are tuned first. The process is then repeated up to the Nth column.
Once the parameter tuning of Nth column is completed, the tuning is repeated
for individual columns using a GA2, beginning with first column. During this
phase of individual tuning, the parameters, except those of the column targeted
for tuning, are set to their previously tuned values. The tuning process is then
repeated until the total generation, gtotal, for GA1 and GA2 reaches Gtotal.

4 Numerical Experiments

We evaluated the effectiveness of the proposed tuning method of the ladder-like
neural oscillators. As an example to reproduce the complex rhythmic signals like
living animals, we applied the proposed tuning method to a rigid link model of
C. elegans, which includes 12 pairs of neural oscillators [4]. We conducted the
parameter tuning by using the conventional method (the ‘simple tuning method’)
as well as the proposed method, and compared these results.

4.1 Acquisition of C. elegans Rhythmic Signal

The rigid link model for C. elegans [4] used in this experiment represents the
body of C. elegans and is based on the actual neuromuscular structure, inner-
vated by 12 pairs of motor neurons (see Fig. 3). The angle qn of the nth link
is controlled by the output yn of the nth pair of ladder-like neural oscillators.
To acquire observations of rhythmic signals in C. elegans, five or more animals
were placed on a plate containing nematode growth medium [5]. Their sinusoidal
locomotion was recorded using a video camera mounted on a stereomicroscope
for approximately 1 min at 24 frames per second. Each frame of the video was
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Fig. 3. A rigid link model of C. elegans
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Fig. 4. Evolution of the error judgment value, Jelite

processed using the following procedures: (a) binarization, (b) denoising, (c)
skeletonizing, and (d) division of body line into the 16 parts, using image pro-
cessing software. Because the rhythmic signals acquired from C. elegans had
high levels of background noise, the signal was approximated using the following
equation:

qD
n = AD

0 n +
K∑

k=1

AD
n,k sin

(
2kπ

CD
s

t − dD
n,k

)
(14)

AD
0 n is a bias, AD

n,k is the amplitude of oscillatory output, CD
s is the output-cycle

length, and dD
n,k is the phase. The link angle was approximated by K = 2. The

data were discretized by sampling L, and were set to the desired link angle qD
n (l).

In addition, qD
n (l) was normalized to the maximum value of the desired link angle

and denoted as the desired output yD
n (l) of the corresponding pair of oscillators.

4.2 C. elegans ’s Rhythmic Signal Generation

To generate the desired outputs from the 12 columns of ladder-like neural oscilla-
tors, the parameters were tuned using the proposed tuning method. The number
of neural oscillator columns was set to N = 12, and the desired output of the
nth pair of oscillators was calculated using data acquired from C. elegans. The
range of parameters used in this study were Tr i = [0,∞) [sec], Ta i = [0,∞) [sec],
wi,j = (−∞,∞), bi = [0,∞), si = 1.0. The generation number of tuning method
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Fig. 5. Results of reproduction of the rhythmic signals in C. elegans)

were G1 = 200, G2 = 20, and Gtotal = 2, 000. To reduce the computational
load, the time constants Tr, Ta and the fatigue coefficient bi were represented by
equivalence at all oscillators.

We conducted five trials using different initial values for both tuning methods,
the proposed tuning method and simple tuning method. The best trial T best was
the one that yielded the lowest error judgment value, J , at Gtotal = 2, 000th
generation of a GA among five trials. The worst trial T worst yielded the highest
value of J . The values for J in the elite individual at each GA generation in the
two trials, T best and T worst, are shown in Fig. 4. The solid line represents Jelite

the proposed tuning method and the dotted line represents the simple tuning
method. The evolution curves, Jelite produced by the proposed tuning method
decreased smoothly prior to the 200th generation in comparison with Jelite of
the simple tuning method. In addition, Jelite was lower for the proposed tuning
method than for the simple tuning method at the 2,000th generation. The total
output, yn, of the nth pair of oscillators which used the parameters tuned by
T best in Fig. 4 is shown in each panel of Fig. 5 (solid line; data not shown for
n = 2, 4, 6, 8, 10, 12). Panels (a) and (b) illustrate the results of the proposed
and simple tuning methods, respectively. The dotted line represents the desired
outputs, yD

n , of the nth pair of the oscillator. From the results, we confirmed that
the outputs of all pairs of oscillators correlate with the desired output for the
parameters tuned using the proposed method. In contrast, the output of a few
pairs of oscillators did not reproduce the desired output using the simple tuning
method. Although, it has been difficult to tune the parameters for 12 pairs of
neural oscillators to generate complex signals of animals [4], the proposed tuning
method appears to generate the desired oscillatory outputs (shown in Fig. 5).
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5 Conclusions

There was no effective tuning method for setting the parameters of a nonlin-
ear neural oscillators that have a ladder-like structure. Therefore, we proposed a
novel method for automatically tuning the parameters included in neural oscilla-
tors with a ladder-like structure. To clarify the relationship between parameters
and each output of oscillators, we linearized the equations of the neural oscil-
lators and derived the tuning rules for both the time constants and amplitude
of the oscillatory outputs. Underivable other parameters were tuned by using a
genetic algorithm (GA). To avoid the stagnation of GA-learning, we formulated
a two-step GA. In this algorithm after tuned all parameters of neural oscillators
generally by a Global GA, parameters of each pair of oscillators were individu-
ally tuned by a Local GA. Based on numerical simulation of mimicked rhythmic-
signal generation in C. elegans, the proposed method successfully tuned all the
parameters included in the neural oscillators, and generated sinusoidal complex
signals. Given the success of the proposed method, future studies may evaluate
tuning methods for neural oscillators that have a non-ladder-like structure.
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