Chapter 125
Pattern Discrimination of Mechanomyogram

Using a Delta-Sigma Modulated Probabilistic
Neural Network

Keisuke Shima and Toshio Tsuji

Abstract This paper proposes a discrimination method for mechanomyogram us-
ing probabilistic neural network based on delta-sigma modulation. The proposed
method includes a statistical model so that the posterior probability for the given
input patterns can be estimated. Also, the 1-bit pulse signals with delta-sigma mod-
ulators used in this paper improves the calculation speed of the probabilistic neu-
ral network implemented in the hardware. Finally, discrimination experiments were
conducted using the mechanomyogram measured from an amputee.
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Introduction

Bioelectric signals such as electromyograms and electroencephalograms reflect the
internal conditions of the human body including the intention regarding body mo-
tions. If the motion intention can be estimated from biological signals, it could be
used as a control signal for artificial limbs and human-machine interfaces.

The present paper explores the utilization of the mechanomyogram (MMG) [1]
for the human-machine interfaces [2, 3]. Unlike electromyograms and electroen-
cephalograms, it is not affected by the change of skin impedance caused by sweat-
ing. For the human-machine interfaces, the discrimination of multiple motions is
necessary, as well as the estimation of muscular force from the measured MMG
signals.

The probabilistic neural networks (PNNs) [4] have been applied to the pattern
discrimination problems for bioelectric signals such as electromyograms. Our re-
search group proposed a PNN for the pattern discrimination of bioelectric signals,
which is called a log-linearized Gaussian mixture network (LLGMN) [5]. Then,
the LLGMN has been used to develop various human-machine interfaces such as
myoelectric prosthetic hands [6]. In such systems, the software implementation of
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the LLGMN on a general-purpose computer was adopted; however, it has not been
applied to human-machine interfaces because of the difficulty to reduce the size of
the interface device to be portable.

In this paper, for the aim of estimation of forearm motions from MMGs in a digi-
tal hardware, we propose a feature extraction and discrimination method using PNN
based on delta-sigma modulation. As delta-sigma modulation and statistical model
are included in PNN, the proposed method can realize high accuracy discrimination

for the MMGs.

MMG Discrimination Using the Delta-Sigma Modulated PNN

The MMG signals can be measured using acceleration sensors which are attached
to the forearm. Then, full-wave rectification and smoothing process by a second
low-pass filter, whose cut-off frequency is f; [Hz], are carried out for the measured
MMG. The normalized signals, the sum of which for all channels makes 1, are
converted into the input vector x(t) = [x;(t), x2(t), . . ., x.(t)]T for time r and are
used for pattern discrimination. Also, the user’s force information for x(7) is defined
as follows: '

n—1

1 R

RMS;(t) = | = ZMMG,-(: — 1), (125.1)
n

=0

L
I <~ RMS;(t) — RMS
Fumc(t) = — E : —
Mmcll) = 7 £~ RMS]"* — RMS’

(125.2)

where MM G,(t) 1s the preprocessed MMG signal from the ith acceleration sensor;
and RM S and RM S;" are the average of RM S;(t) at the maximum voluntary
contraction of the muscle and at rest, respectively. When Fsp6(t) exceeds threshold
M of the motion occurrence, the movement is estimated from the input vector x(t)
using the PNN.

The LLGMN using delta-sigma modulation [7] is used as the discrimination
method for MMG, which is based on the Gausian mixture model and the log-linear
model of the probability density function (pdf). First. the input vector x € R is
converted into the modified vector X € ®¥ as follows:

T, (1253)
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where x;, 1 = 1.2, ..., d, are the elements of x and H = 1 + L(L + 3)/2. The first
layer consists of H units corresponding to the dimension of X and the identity func-
tion 1s used for activation of each unit. In the second layer, each unit receives the out-
put of the first layer weighted by the weight w\ ™(h =1,2,... H:ik=1,...,K;

m=1,..., M;) and outputs the posterior probability of each Gaussian compo-
nent. Here. K denotes the number of classes, and M; is the number of Gaussian
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components in class k. The relationships between the input of unit {k, m} in the
second layer 2, . and the output 2 Oy m are defined as

A 2)
(2) (L (k.m) (2) exp[ jk.m] 1na
- [k.m - Z Ohwh s Ok,m - X M, , (1..34)
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> 2 exp[Plew]
k'=1m'=1

where wZK'M“ = (. The third layer consists of K units, and the function between
the input and the output is described as

M,
30, =3, = ZQ)OM . (125.5)
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Delta-sigma modulation is a technique in which the input signal such as multi-bit
signals and analog signals is converted into a I-bit pulse signal, and it has been
attracting interests in various flelds such as acoustics and communications [8]. The
structure of a bipolar-type delta-sigma modulator (DSM) is shown in Fig. 125.1,
where the output takes the values “—1" and “41. 7 In this figure, the bold line
represents multi-bit signals and the thin line 1-bit signals. The output y of the circuit
can be expressed in the form of

_ z7! (= 1) - 1 (v=0)
v—l—z‘lx I Y= -1 (v <0)

(125.6)
where x is the input, v is the integrated value of the quantization error, and 7 > 0
is the feedback gain. Here, “—1" and 41" are represented by the low level and the
high level in the hardware, respectively.

The structure of the LLGMN based on delta-sigma modulation is shown in
Fig. 125.2. The network consists of 1-bit adders, 1-bit multipliers, weight multipliers
using DSM, and so on. Here, the input data are normalized to its minimum value of
—1 and maximum value of +1 as a prerequisite for pattern discrimination, due to the
restriction of the calculable ranges of the 1-bit pulsed NNs. First, the input vector
x(t) 1s interpolated using the linear interpolation method at a sampling frequency fj,
[Hz], and nonlinearly transformed using the (H — L — 1) 1-bit multipliers. Next, for
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Fig. 125.2 Structure of an LLGMN using delta-sigma modulation

the calculation of the weight coefficients, the input function of the second layer is
converted as follows:

(k.m)

DL = Z Z”’O i (125.7)
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where N is an arbitrary positive integer. Further, the exponential function included
in (125.4) is approximated as follows by using the Taylor series:
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where C is the order of the Taylor series ignoring the high-order terms greater than
C+1. Because the range of the values for the input functions of the second layer (see
(125.7)) are restricted between —1 and +1 using the appropriate value of N, each
term of the right-hand side of (125.8) can be calculated in a range of values between
—1 and +1. The output function (125.4) in the second layer is then realized by using
multipliers and dividers, after it is demodulated to multi-bit signals using low-path
filters. Finally. the outputs of the network are calculated by (125.5) by using the
1-bit adder from the outputs in the second layer. Thus, the posterior probabilities of
input patterns can be calculated using DSMs.
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Experiments

In order to verify the validity of the proposed method, we implemented the delta-
sigma modulated PNN on a field programmable gate array (FPGA), and MMG
discrimination experiments were conducted. MMG patterns were measured from
four healthy subjects (A—D: male) and a night forearm amputee (E: male). First,
we measured the acceleration signals at four locations of a forearm using accel-
eration sensors (L = 4, NIHON KOHDEN Corporation) with each subject. The
measured signals were recorded at a sampling frequency of | [kHz], and filtered by
the second band-path filter (bandwidths: 30 — 150 [Hz]) to extract the MMG. The
subject was asked to pertorm the following four motions (K = 4) continuously: M1:
hand opening, M2: hand grasping, M3: wrist extension, and M4: wrist flexion (see
Fig. 125.3). Parameters of proposed method were set as f.,, = 0.5 [Hz], f, = 25
[MHz], M, =2, N = 30, and C = 4.

An example of the measured MMG of subject E is shown in Fig. 125.4. In this
figure, four channels of the input MMG are shown. The discrimination rates of the
MMG measured from five subjects are shown in Fig. 125.5, which are represented
by the software implementation of the LLGMN using C language and the hardware
implementation of the LLGMN using DSMs. From this figure, we confirmed that the
proposed method has a high accuracy of pattern discrimination in digital hardware.
The discrimination rates of all the trials were 94.3 £ 1.65 [%] and 92.48 +2.38 [%].

M1: Open M2: Grasp M3: Extension 4M4: Flexion

Fig. 125.3 Forearm motions used in the experiments
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respectively. It should be noted that the feature extraction of the MMG was imple-
mented in the software, and only discrimination of the MMG patterns is performed
by an FPGA.

Conclusions and Future Work

In this paper, we proposed the MMG discrimination method using a delta-sigma
modulated PNN in digital hardware. Since the discrimination rates of the proposed
PNN was 92.48 + 2.38 [%]. it can be concluded that the proposed method has
a high performance in the case of the MMG discrimination. In the future, we
plan to study the human-machine interface in digital hardware using the proposed
method.
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