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Abstract

Recently, it was observed that mice could identify
an odor by paying attention to only a few components
comprising the odor. It was also reported by Naka-
mura et al. [1] that each individual is attracted to
different components. This mechanism is called “at-
tention;” however, it has not been completely eluci-
dated.

In this paper, first, we propose a novel artificial neu-
ral network model based on the biological structure
of an olfactory system. Then, a series of computer
simulations of odorant discrimination are performed
to confirm the ability of attention of the proposed
model. Finally, we changed the connective weights be-
tween the neurons to simulate individual differences.
The simulation results lead us to believe that the in-
hibitory connections from piriform cortex to olfactory
bulb may contribute to the individual differences that
are observed in the behavioral experiment,.

1 Introduction

In recent years, the demand for odor processing
apparatuses has been increasing in fragrance and en-
tertainment industries. Odorant information is one
that is difficult to handle because it is composed of a
combination of 200 to 400 thousands of molecules [2],
thereby forming high-dimensional information. There-
fore, it requires vast amounts of computation to dis-
criminate or classify odors. Thus far, to reduce the
dimension of odorant information, the ability of most
odor discriminating apparatuses, for example, an elec-
tronic nose for banana ripeness developed by Llobet
et al. [3] has been specialized for particular odors; fur-
ther, it is not comparable to that of a living nose.
Therefore, learning from the olfactory system of a
living nose would be one of the most efficient and
prospective approaches.

A number of studies have been reported on the ol-
factory system of mice. It can be considered to have
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Figure 1: The concept of attention behavior

three parts : olfactory receptors (ORs), which respond
to odorant molecules; an olfactory bulb (OB), which
performs the integrated process of the response of the
ORs; and a piriform cortex (PC), which discriminates
the odorants based on the information provided by the
OB [2] (Fig.2). Haberly et al. [4] have revealed more
detailed structure of the olfactory system anatomi-
cally. Through a series of behavioral experiments on
odor discrimination, Nakamura et al. [1] reported that
mice could identify an odor focussing on only a part of
components composing the odors. It was also observed
that each individual focuses on different components.
This behavior is termed as “attention.” The mecha-
nism of attention was researched by Li et al. [5] using
their computer model of the OB; they referred to at-
tention as “adaptation”. Li et al. suggested that an
inhibitory signal to the OB might be one of the causes
of attention. However, the origin of the inhibitory sig-
nal and its control mechanism is still unknown; thus,
the mechanism of attention has not been completely
elucidated.

In this research, we first construct a novel artificial
neural network model of the olfactory system that con-
sists of OR, OB, and PC based on biological insights
[4]. In the proposed model, the inhibitory connection
from the PC to the OB reported by Heimer [6] are
also taken into account. Then, a series of computer



©ISAROB 2007

Odorant Map

% | ~

Piriform Cortex

Receptor Cells Olfactory Bulb
Figure 2: Schematic figure of the olfactory system.

simulations of the model is carried out with changes
in the inhibitory connections. The simulation results
are compared to the result of the behavioral experi-
ment performed by Nakamura et al. to elucidate the
mechanism of attention. In this paper, we report that
the inhibitory connections from the PC to the OB can
cause attention, and differences in the inhibitory con-
nections can cause the individual differences among
mice.

2 Behavioral experiments for odor dis-
crimination of mice

Nakamura et al. implemented a series of behavioral
experiments on odor discrimination by mice to reveal
the behavior of attention. This section describes the
experiments and its results.

2.1 Methods

The behavioral experiments on odor discrimination
by mice were carried out by Nakamura et al. [1] using a
Y-shaped passage (Y-maze), as shown in Fig.3. First,
a mouse that is deprived of water is placed at the start
point (point C). The mouse was allowed to drink wa-
ter as a reward only if it chose the correct point-A or
B-from where the odor emanated. Then, one trial was
defined as the duration from the mice starting at point
C to its arrival at either point A or B. Twenty-four tri-
als, which were defined as one session, were performed
in a day for each mouse. The accuracy rate at which
the mice chose the rewarded odor was recorded. When
the correct rate surpassed eighty percent, it was con-
sidered that the mice have learnt the rewarded odor.
Because the experiments required discriminating be-
tween two kinds of odors, an accuracy rate of fifty
percent indicates that the mice could not discrimi-
nate between the odors at all. In the experiments,
the mice were to learn an rewarded odor [Ci:EB:IA]
that composed of three types of molecules-isoamyl ac-
etate (IA), ethyl butyl (EB), and citral (Ci). Then,
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Figure 3: Structure of Y-maze and drinking behavior
of mouse (revised from the figure in the literature 1.)

the mice were made to discriminate the rewarded odor
from the odors containing the same types of molecules
as the rewarded odor ([Ci], [EB], [IA], and [EB:IA])

(1].
2.2 Results

Fig.4 shows the experimental results of two out of
the eight individuals on whom the experiment was per-
formed. In Fig.4, the vertical and horizontal axes show
the accuracy rate and the odors for discrimination, re-
spectively.

In the case of individual A, we observe that the
accuracy rates for odors containing the EB molecule
([EB], [EB:IA]) are approximately fifty percent. This
result implies that individual A paid attention only on
the EB molecules to discriminate between the odors;
therefore, it could not discriminate between the odors
of [EB] and [EB:IA] from the rewarded odor containing
the EB molecules. Two out of eight individuals paid
attention on the EB molecules.

Now, in the case of individual B, we observed that
the accuracy rate for odor [EB:IA] is approximately
fiftty percent. This result implies that individual B
paid attention to the combination of molecules EB and
TA. Tt was observed that five out of eight individuals
paid attention to the combination of EB and TA.

From these results, Nakamura et al. suggested that
the mice pay attention to a part of the molecules that
is contained in the odors to perform the odor discrim-
ination task; further, there are individual differences
between the mice with respect to the molecules that
they would pay attention to.

3 A model of the olfactory system of
mice

In this section, we propose a model of the olfactory
system constructed based on biological insights. An
overview of the proposed model is shown in Fig.5. In
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Figure 4: Results of odor discrimination experi-

ment. (unpublished data)

Fig.5, the R layer comprises olfactory receptors (ORs)
that respond to odorant molecules; B layer, the olfac-
tory bulb (OB); P layer, the anterior piriform cortex;
and Z layer, the post piriform cortex that outputs the
discrimination results. Each layer consists of a neuron
model, and the neuron models are connected based on
the biological insights [4], [6]. The connective weights
are subject to change by Hebbian learning rule. The
details of each layer are given below.

3.1 Receptor layer

There are about 1000 types of ORs in the nasal
passage of mice, and each type of OR responds to dif-
ferent types of molecules [7]. The proposed model is
designed to discriminate odors that consist of N types
of molecules Sy, Ss,---Sy; thus, the R layer is com-
posed of N types of receptors. The density of each
molecule is expressed as a value in the interval [0, 1].
The receptor model is defined by using the following
equation according to the general neuron model, which
is expressed as the sigmoid function [8]:

1
1 + exp{—€n(,j) (U, () = Org,))}
(1)

where € is the gradient of sigmoid function; u(t), the
internal state of a neuron at time step t; and 6, the
firing threshold of the neuron. Each receptor of the
j column in the R layer, which is shown in Fig.5, re-
sponds to the same molecule S; with a different firing
threshold #. The internal state of each receptor in the
R layer is defined as w(; j)(t) = si(t). The output of
the receptors calculated by equation (1) are inputted
to the OB layer (B layer).

Ugrij(t) =

3.2 Olfactory bulb layer

The olfactory bulb consists of glomeruli, excitatory
neurons known as mitral cells, and inhibitory neurons
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Figure 5: A model of the olfactory system in mouse.

known as granule cells. Glomeruli are a convergence of
the nerve terminal extending from the olfactory recep-
tors, and they map the responded molecules. There
are around 1000 pairs of glomeruli on the olfactory
bulb surface. The response pattern of the glomeruli is
called odorant map [9]. The outputs of the glomeruli
are transmitted to the mitral cells. Further, the mitral
cells receive an inhibitory input from the PC via the
granule cells [6].

In the proposed model, the gromeruli is omitted
for simplification, and the receptor R; ; that responds
to the same molecule S; is directly connected to the
same mitral cell B; ;. Mitral cell B;; maps molecule
S;, and the firing pattern of the B layer represents
the odorant map-mediated mitral cells. The neurons
in the B layer receive excitatory input from the R
layer and inhibitory input from the P layer; thus, the
internal states up(; j)(t) are as follows:

NOPEEEEY

R(m,n)

_E:wl’ z,y),

P(z,y)

W(t) R(m,n),B(i,7) UR(m,n)(t)
J)( ) U(t)P(Z,y)a (2)

where Wg(m n),B(i,j), WP(m,n),B(i,j) are the connective
weights from the B and P layers, respectively. The
output of each neuron, Ug(; j)(t), is expressed as a sig-
moid function in equation (1). The outputs of mitral
cells are transmitted to neurons in the PC.

3.3 Piriform cortex layer

The PC can be divided into anterior piriform cor-
tex (APC) and posterior piriform cortex (PPC). It is
considered that the APC processes the input from the
OB, while the PPC discriminates the odor [4]. There-
fore, in the proposed model, the PC layer was divided
into the P and Z layers. Further, it was found by
Heimer et al. that inhibitory connections exist from
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the PC to the OB [6]. However, these connections are
very complex and consist of individual difference, and
hence, the connections between the B and P layers
are randomly connected in the proposed model. The
internal state up(; j)(t) of each neuron in the P layer
is given by the following equation:

Z WB(m,n),P(i,5) (1) UBmn)(t), (3)

B(m,n)

up(ij)(t) =

where wp(m n),p(i,j) (t) are the connective weights from
the B layer to the P layer. On the other hand, the
internal state uz(t) of the neuron in the Z layer is
given by the following equation:

uZ(t) = Z wP(m,n)7Z(t) UP(m,n) (t)7 (4)
P(m,n)

where wp(m n),z(t) are the connective weights from
the P layer to the Z layer. Similar to the R and B
layers, the output of each neuron in the P and Z layers
is defined as a sigmoid function of equation (1).

The discrimination result was obtained according
to the output of the Z layer. Output Uz < 0.5 in-
dicates that the model has discriminated the odor as
unrewarded odor, while output Uz > 0.5 indicates re-
warded odor. In this way, the Z layer discriminates
odor based on the output of the P layer.

3.4 Learning algorithm

The connective weights between the neurons in each
layer are initialized by a uniform random value of in-
terval [0, 1] and are updated by the Hebbian learning
rule [10]:

Wi(m,n), k(i) (E+ 1) =Wiim n) k(i5) () + 0W(E) 1(m0,m),k(5,5)
5wl(m’n)7k(i7]~) (t) = O[{U(t)k@J) - bk}{U(t)l(m,n) - bl}7

where « is the learning rate; b; and by are the thresh-
olds of the change in the sign of w;(m,n),k(i,j) (). The
connective weights between the B, P and P, Z layers
are updated by the Hebbian rule. The connection be-
tween the R, B layer are considered to be genetically
determined [9] and as a result the connective weights
remained unchanged.

Learning is assumed to be controlled by a higher
brain function. For simplification, the higher brain
function is modeled as confidence index C(t) (0 <
C(t) < 1). When the discrimination result is cor-
rect, the confidence index increases by 1/n, while for
an incorrect result, the confidence index decreases by
1/n. Here, n is defined as a constant number repre-
senting the volatility of the confidence index. When

)
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Figure 6: The flowchart of weight training.

the confidence index C(t) > 6., the inhibitory con-
nection, from the P layer to the B layer, is updated
by the Hebbian learning rule, while when C(t) < 6.,
the inhibitory connection is decreased by a constant
rate f (0 < 8 <1). The learning algorithm can be
summarized in Fig.6.

4 Simulation

In this section, a series of simulations is performed
to confirm if the proposed model can simulate atten-
tion behavior and individual differences.

4.1 Simulation of learning and attention

First, the connection between the B and P layers
was initialized to a random value in the interval [0, 1].
For this initial state, the model was labeled as a neural
network model M1. One step was defined as from
inputting molecules to R layer to output of Z layer.
The rewarded odor A (N = 5,81 =82 =83 = 1,84 =
s5 = 0)was repeatedly inputted to the model for 15
steps. While these steps were carried out, the weights
were subject to be updated toward the neuron in Z
layer fires stronger by the algorithm shown in Fig.6.

The changes in the outputs of the neural network
model M1 is shown in Fig.7; where (a) and (b) show
the firing patterns of each layer when ¢t = 1 and t = 15,
respectively. The output of each neuron is represented
by a square. The larger the output of the neuron is,
the whiter the corresponding square is. The changes
in the inhibitory weights from the P layer to the B
layer and the confidence indices are also shown in Fig.9
and Fig.10, respectively. From Fig.7(a), it can be ob-
served that the neuron in the Z layer fires weakly when
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t = 1. This means that the model discriminated the
odor as unrewarded odor, which is incorrect discrim-
ination. After the rewarded odor A was repeatedly
inputted, connective weights were updated by the al-
gorithm shown in Fig.6; thus, the model M1 learnt
odor A as the rewarded odor. This result can be ob-
served in Fig.7(b) in which the neuron in the Z layer
fires strongly when ¢ = 15.

At the same time, the inhibitory connective weights
from the P layer to the B layer increases, for example,
the inhibitory weights from P, 3 to B3 increase, as
shown in Fig.9. Hence, the neurons mapping molecule
S3 were inhibited. As the result, the model M1 dis-
criminates odors only by molecules S; and Ss, for
which the attention ability of the model M1 has been
confirmed.

Next, the same simulation, which was described
above, was carried out for another neural network
model M2, which is initialized with different connec-
tive weights of inhibitory connections from the P layer
to the B layer. This simulation result is shown in
Fig.11; (a) and (b) show the firing pattern when ¢t =1
and t = 15, respectively. When ¢t = 15, the model
learnt odor A as a rewarded odor because the neuron
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(b) The states of M2 when odor B is inputed

Figure 11: The states of M1 and M2 when odor B is
inputed.

in the Z layer fired strongly. It can be also observed
that M2 has paid attention to molecules S; and Ss,
while M1 has paid attention on S; and Ss. These re-
sults suggest that the difference in the initial weights of
inhibitory connections from the P layer to the Blayer
can make the proposed model pay attention to differ-
ent molecules.

4.2 Individual differences in attention

In section 4.1, the neural network models M1 and
M2 have learnt to discriminate the rewarded odor A by
paying attention to the different molecules. Here, to
determine the discrimination ability of both the mod-
els, an unrewarded odor B, which contained some of
the common molecules from the rewarded odor A, is
inputted to M1 and M2.

The result is shown in Fig.11. Fig.11(a) and (b)
show the outputs of M1 and M2 respectively when the
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unrewarded odor B is inputted. It can be observed
from Fig.11(b) that the neuron in Z layer fired weakly,
thus M2 has successfully discriminated the odor B as
the unrewarded one. However, M1 has discriminated it
as the rewarded odor A, because the neuron in Z layer
fired strongly as the same way when the odor A was
inputted. In the simulation described in the previous
section, M1 has paid attention to molecules S; and
S5. Therefore, whenever the inputed odor contains
both molcules S; and S3, M1 would discriminate it as
the rewareded odor A.

These simulation results correspond to the behav-
ioral experiment carried out by Nakamura et al. [1],
which was described in section 2. Further, the re-
sults lead us to believe that the individual differences
in odor discrimination could be caused by differences
in inhibitory connections from the anterior piriform
cortex (P layer) to the olfactory bulb (B layer). As
mentioned in section 1, Li et al. [5] have suggested
that the attention is caused by inhibitory signal. Our
simulation results support their hypothesis and imply
that the unspecified origin of the inhibitory connection
might be the anterior piriform cortex.

5 Conclusion

In this paper, we focused on the attention behav-
ior of mice observed from behavioral experiments, and
proposed a neural network model of their olfactory
system based on biological insights. A series of simu-
lations of the proposed model was carried out so that
the attention behavior was observed. Also, by chang-
ing the inhibitory connection from piriform cortex to
olfactory bulb, a possible cause of the individual dif-
ferences in attention was discussed.

Although the proposed model is a macroscopic
model, the simulation results showed that it captured
the feature observed in the odorant discrimination ex-
periment of mice. Further works have to be carried
out to enable the model to deal with more compli-
cated odorant information like odors that exist in the
real world. Therefore, for next step, we are planning to
improve the receptor model and olfactory bulb model.
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