
FPGA Implementation of a Probabilistic Neural
Network Using Delta-Sigma Modulation for Pattern

Discrimination of EMG Signals
Keisuke Shima, and Toshio Tsuji

Graduate School of Engineering, Hiroshima University
Higashi-Hiroshima, Japan 739-8527

Email: keisuke, tsuji @bsys.hiroshima-u.ac.jp

Abstract— This paper proposes a novel probabilistic neural
network (PNN) using delta-sigma modulation (DS modulation)
with the aim of realizing high performance in the case of the
pattern discrimination of bioelectric signals. The proposed net-
work includes a statistical model so that the posterior probability
for the given input patterns can be estimated. Moreover, the
calculation speed of the proposed network in the hardware
can be increased since the 1-bit pulse signals with delta-sigma
modulators (DSMs) are used for the realization of the internal
calculation of the network. In this paper, we implemented
the proposed network on a field programmable gate array
(FPGA), and discrimination experiments were conducted using
the artificial data and the electromyogram (EMG) patterns of
an amputee. In the experiments, we confirmed that the proposed
network has a high accuracy of pattern discrimination.

I. INTRODUCTION

Probabilistic neural networks (PNNs) can be used to solve
statistical pattern recognition problems based on the Bayesian
discrimination theorem, wherein a probability model is in-
troduced into the network structure to estimate the posterior
probability for given input patterns by appropriately training
the synaptic weights [1]. Because the PNNs can atain high
accuracy in the problems of pattern discrimination, they have
been applied to the pattern discrimination problems for bio-
electric signals such as electroencephalograms (EEGs) and
electromyograms (EMGs) [1]–[3].

Bioelectric signals such as EMGs reflect the internal con-
ditions of the human body and the intention regarding body
motions. If the motion intention can be estimated from bi-
ological signals, it could be used as a control signal for
artificial limbs and human-machine interfaces. Our research
group proposed a PNN for the pattern discrimination of
bioelectric signals, which is called a log-linearized Gaussian
mixture network (LLGMN) [3]. The LLGMN estimates the
posterior probability based on the Gaussian mixture model
(GMM) and the log-linear model, and it results considerably
high ability in the case of EEG and EMG pattern discrimina-
tion problems. Then, the LLGMN has been used to develop
various human-machine interface for myoelectric prosthetic
hands, an EMG-based pointing device, and an EMG-controlled
electric wheelchair [4]–[7]. In such systems, the software
implementation of the LLGMN on a general-purpose computer
was adopted; however, the development of practical human

interface applications was difficult because the implementation
of the interface devices to be compact and portable as much
as possible was quite essential.

On the other hand, various neural networks (NNs) have been
implemented in digital hardware [8], [9]. Generally, hardware
implementations are achieved based on application specific
integrated circuit (ASIC) and field programmable gate array
(FPGA) devices. We also implemented the LLGMN on an
FPGA chip and verified it on an EMG-based pointing system
[5]. However, the digital circuit scale in [5] was very large
because it adopted multiple bits representation of variables
used in the LLGMN. Moreover, it could not fully utilize the
ability of parallel processing in the digital hardware since
the LLGMN is not structurally compatible with the hardware
architecture in the network.

Generally, every FPGA has the limitation of the digital
circuit scale. In order to cope with this problem, pulsed NNs
have been widely applied to realize the parallel processing
in NNs [10]–[12]. Recently, these networks have received
considerable attention since internal neurons are connected by
a single wire; therefore, a larger number of neurons can be
implemented in parallel. Further, pulsed NNs are expected to
reduce the digital circuit scale during implementation since
the internal arithmetic is calculated using 1-bit pulse signals.
In particular, Murahashi et al. [11] proposed a pulsed NN
model, which used delta-sigma modulation (DS modulation)
as the 1-bit pulse signal generation method, and some learning
algorithms such as generalized harmonic analysis (GHA) and
back-propagation (BP) learning were realized. However, be-
cause bioelectric signals such as EMGs are greatly influenced
by individual differences, it is preferable to use PNNs as the
pattern discrimination method. Because these networks can
estimate the probability density function (pdf) from small
sample size data, they can discriminate on the basis of the
statistical model.

In this paper, for the aim of introducing hardware architec-
ture and statistical models into the NN, we propose a novel
PNN that combines a pulsed NN with the LLGMN. Since
DS modulation is used as the 1-bit pulse signal generation
method and the elemental device of the internal calculations,
the circuit scale of the PNN in hardware could be reduced.
In addition, regarding the statistical pattern discrimination of
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bioelectric signals, the realized NN hardware can be expected
to exhibit high performance.

This paper is organized as follows. Section II explains the
architecture and algorithm of the PNN using DS modula-
tion. The discrimination experiments for the artificial data
are presented in section III, and the feature extraction and
discrimination algorithm of EMG signals are presented in
section IV. The final section gives the conclusion of this paper.

II. PROBABILISTIC NEURAL NETWORK USING

DELTA-SIGMA MODULATION

In the proposed PNN, DS modulation, which is a type of 1-
bit pulse modulation method, is used as the realization method
for the internal arithmetic of the LLGMN proposed by Tsuji et
al. [3]. In the following subsections, the internal architecture
of the LLGMN is shown and the proposed calculation method
for the LLGMN using DS modulation is explained.

A. LLGMN [3]

The LLGMN is based on the GMM and the log-linear model
of the pdf. By applying the log-linear model to a product of
the mixture coefficients and the mixture components of the
GMM, a semiparametric model of the pdf is incorporated
into a three-layer feed-forward PNN. Through learning, the
LLGMN distinguishes the signal patterns with individual
differences and the lag in its measurement, thereby enabling
precise pattern recognition for bioelectric signals [3]–[7]. In
this subsection, the internal architecture and algorithm of the
LLGMN is presented.

The structure of LLGMN is shown in Fig. 1. First, the input
vector is converted into the modified vector
as follows:

(1)

where , are the elements of and
. The first layer consists of units corresponding

to the dimension of and the identity function is used for
activation of each unit.

In the second layer, each unit receives the output of the first
layer weighted by the weight

and outputs the posterior probabil-
ity of each Gaussian component. Here, denotes the number
of classes, and is the number of Gaussian components in
class . The relationships between the input of unit in
the second layer and the output are defined
as

(2)

(3)

where .
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Fig. 1. Structure of the LLGMN [3].
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Fig. 2. Delta-sigma modulator [11].

The third layer consists of units corresponding to the
number of classes. The unit sums up the outputs of
components in the second layer. The function between
the input and the output is described as

(4)

where the output corresponds to the posterior probability
of class .

B. Delta-sigma modulation and neural network model

1) DS modulation [11]: DS modulation is a technique in
which the input signal such as multi-bit signals and analog
signals is converted into a 1-bit pulse signal, and it has been
attracting interests in various fields such as acoustics and
communications. The distinctive feature of DS modulation is
that the SN ratio is improved when the sampling frequency
is increased much higher than the frequency required for the
original signal; because the quantization noise in the output
of the delta-sigma modulator (DSM) is generated in the high-
frequency band, the quantization noise can be reduced in the
original signal which exists in the low-frequency band. The
structure of a bipolar-type DSM is shown in Fig. 2, where the
output takes the values “ ” and “ . ” In this figure, the
bold line represents multi-bit signals and the thin line 1-bit
signals. The output of the circuit can be expressed in the
form of

(5)

(6)
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Fig. 3. Structure of an LLGMN based on DS modulation.

where is the input, is the integrated value of the quanti-
zation error, and is the feedback gain. Here, “ ” and
“ ” are represented by the low level and the high level in
the hardware, respectively. Since the feedback is sent from the
output to the input, the quantization errors become virtually
equal to 0 and thus the output signal is almost the same as the
input signals [12].

The generated 1-bit pulse signal can be easily demodulated
using a low-path filter. Then, Murahashi et al. [11] proposed
the unified signal processing algorithms such as 1-bit adders
and multipliers. This paper describes the realization method
of the internal calculation of the LLGMN using DSMs and
the signal processing algorithms proposed by Murahashi et al.
[11].

2) LLGMN using DSMs: The pulsed NNs using 1-bit
signals can prevent the circuit scale from increasing. The
calculable ranges of the NNs, however, are limited to the range
from to . The weight coefficients of the LLGMN can
be any real number and exponential functions are used in the
second layer as output functions of the LLGMN. Therefore,
the internal calculation of the LLGMN involves a high degree
of risk that cannot be calculated from to by DSM. The
restrictions of the calculation range are necessary for realizing
the internal calculation of the LLGMN using DSMs.

The proposed structure of the LLGMN based on DS modu-
lation is shown in Fig. 3. The network consists of 1-bit adders,
1-bit multipliers, weight multipliers using DSM, and so on.
Here, the input data are normalized to its minimum value of

and maximum value of as a prerequisite for pattern
discrimination.

First, the input data are converted from multi-bit signals to

1-bit signals using DSMs and nonlinearly transformed using
the 1-bit multipliers. Next, for the calculation of
the weight coefficients, the input function of the second layer
is converted as follows:

(7)

where is an arbitrary positive integer. It should be noted
that the value of each term in the right-hand side of this
equation can be restricted to the range from to if

is appropriately set according to the value of the weight
coefficients. Further, the exponential function included in the
LLGMN can be approximated as follows by using the Taylor
series [13]:

(8)

where is the order of the Taylor series ignoring the high-
order terms greater than . Because the range of the
values for the input functions of the second layer (see (7))
are restricted between and , the right-hand side of (8)
can be calculated in a range of values between and .

The output function (3) in the second layer is then realized
by using multipliers and dividers, after it is demodulated to
multi-bit signals using (8) and low-path filters. Finally, the
outputs of the network are calculated by (4) by using the 1-bit
adder from the outputs in the second layer. Thus, the posterior
probabilities of input patterns can be calculated using DSMs.
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Consequently, the posterior probability for given input pat-
terns can be estimated using the DS modulation. The proposed
network can discriminate based on the GMM model since
the network can take the class with the highest posterior
probability as the result of discrimination. Then, the proposed
method can be realized as the hardware with the discrimination
ability of the LLGMN for bioelectric signals.

III. NUMERICAL EXPERIMENTS

The proposed network realizes all the internal calculations
of the LLGMN using DSMs; however, this method has a high
risk of reducing the discrimination ability because the internal
calculations in this network result some errors such as the 1-bit
modulation of input signals and the approximated exponential
functions. Then, in order to verify the validity of the proposed
PNN, pattern discrimination experiments on artificial data (see
Fig. 4) were conducted.

There are two classes ( ) in a two-dimensional input
space; each consists of two Gaussian sources ( ).
The centers of the Gaussian distributions in Class one are

and and those in Class two are
and . Further, all the centers have

the same variances of . The samples from the two
classes are represented by and , respectively, in Fig. 4. The
theoretical limit of the error probability for the test dataset is
2.00 [%].

The proposed PNN was implemented on a development
board (XtremeDSP Development Kit-II, Nallatech) hosting a
Xilinx Virtex family FPGA chip (XCV3000-4FG676). The
network is described using Verilog-HDL with ISE 7.1i (Xilinx)
design tools and ModelSim XE III 6.0a (Xilinx) as the circuit
simulator. The operation frequency of the FPGA is 25 MHz,
and the width in bits is 16 for the multi-bit signal. Also, the
number of terms in the calculation with the weight coefficient
(7) is and the order of the Taylor series is . With
regard to this, the posterior probabilities of two classes are
calculated after the 1-bit pulse signals from the output function
in the third layer are demodulated to the corresponding multi-
bit signals using low-path filters.

The discrimination rates of (1) the software implementation
of the multi-layer perceptron (MLP) using C language, (2) the
software implementation of the LLGMN, (3) the hardware
implementation of the LLGMN [5], and (4) the proposed
hardware implementation of the LLGMN using DSMs are
shown in Table I. In the experiments, 4000 samples are
used as the discrimination data. Because the MLP requires
sufficient learning and discrimination abilities, we determined
the structure of the MLP based on [3], where the number of
layers is 4 and the numbers of neurons in the input layer,
hidden layers, and output layer are 2, 10, and 2, respectively.
Further, the back-propagation method is used as the learning
algorithm. From the table, it can be seen that the discrimination
rates of the proposed network is slightly lower than those
of the others, which are caused by calculation errors such
as exponential functions and the calculable range of the
DSM. However, it was confirmed that the proposed PNN

Class 1 Class 2
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−1.0

0

0

0.5
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0.5−0.5
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Y

Fig. 4. Scatter graph of discrimination data.

TABLE I

COMPARISON OF THE DISCRIMINATION RATES.

Mean [%] S. D.
MLP 97.53

97.89
[5] 97.66

DSM + LLGMN 97.02

exhibits high performance in pattern discrimination because
the difference in the discrimination rates between the software
implementation of the LLGMN and the proposed PNN is
0.87 [%].

The discrimination rates of the proposed network during a
change in in the calculation with the weight coefficients (see
(7)) are shown in Fig. 5. In this figure, is represented on
the horizontal axis, and the average and standard deviations
of the discrimination rates for 20 sets of the discrimination
results, each of which contains 4000 samples, is shown on the
vertical axis. Also, the average of the discrimination rates of
the software implementation of the LLGMN is shown by the
dotted line. When is large enough, it is confirmed that the
proposed network has a high accuracy of pattern discrimina-
tion at the same level as the software implementation of the
LLGMN.

The digital circuit scales in the hardware implementation
of the LLGMN were 982,058, and the one of the proposed
network scales 961,132. As for the discrimination phase,
247 cycles were required for processing one sample in the
hardware implementation of the LLGMN while 217 cycles
required for the proposed network. Thus, we confirmed that
the proposed network can be decreased 2.13 [%] of digital
circuit scales, and the calculation speed increased 12 [%].

IV. EMG DISCRIMINATION

In order to confirm the effectiveness of the pattern discrim-
ination with bioelectric signals, EMG discrimination experi-
ments were conducted. An EMG signal contains a lot of im-
portant information such as muscle force, intended motion of
the user, and muscle impedance. If user’s motion information
can be discriminated based on EMGs in the hardware, these
applications can be realized as practical systems such as a
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downsized human-machine interface system. In this section,
the feature extraction method and discrimination algorithm of
EMG signals are discussed.

A. Feature extraction of EMG

The contraction patterns based on the coordination of mus-
cles can be extracted from the EMG signals measured from
the user and used for pattern discrimination. First, full-wave
rectification for EMG signals, ,
measured by pairs of surface electrodes is carried out. Then,
the rectified EMG signals are smoothed using a second low-
pass filter, whose cut-off frequency is [Hz]. The normalized
signals, the sum of which for all channels makes 1, are con-
verted into an input vector
for time and are used for pattern discrimination. Each vector
element then becomes

(9)

where is the average of the measured at
rest. Then, the input vector is resampled at a sampling
frequency [Hz] after it is interpolated using the linear
interpolation method since is modulated to 1-bit pulse
signals using DSMs. After it is resampled in each channel as
the input, the discrimination is conducted using the proposed
network. Further, the user’s force information for is
defined as follows:

(10)

where is the average of at the maximum
voluntary contraction of the muscle. By comparing
and the threshold of the motion occurrence, we can de-
termine the timing of the motion occurrence. When
exceeds , the movement is estimated from the input vector

using the NNs.

B. Discrimination experiments of EMG

In order to verify the validity of the proposed PNN, EMG
discrimination experiments were conducted. EMG patterns
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Extensor carpi radialis(iii)

Flexor carpi radialis(iv)(i)

(iii)

Elbow

Dorsum

(ii)
(iv)

Palm

Fossa cubitalis

Fig. 6. Locations of electrodes.

M1: Open M2: Grasp M3: Extension M4: Flexion

Fig. 7. Forearm motions used in the experiments.

were measured from five healthy subjects (A E: male) and
an upper-extremity amputee (F: male). Subject F had lost his
forearm about 3 cm from the left wrist. We measured the EMG
at the four locations (extensor carpi ulnaris, brachioradialis,
extensor carpi radialis, and flexor carpi radialis; see Fig. 6)
by using four pairs of Ag/AgCl electrodes (SEB120, GE
marquette Corp., ) with each subject. The EMG was
recorded at a sampling frequency of 1 [kHz], and it was filtered
by the second low-path filter (cut-off frequency: [Hz])
after full-wave rectification. Further, the normalized EMG
patterns were resampled at a resampling frequency of
[MHz]. The subject was asked to perform the following four
motions ( ) continuously for five-second periods in the
given order: M1: hand opening, M2: hand grasping, M3: wrist
extension, and M4: wrist flexion (see Fig. 7). Also, the number
of terms in the calculation with the weight coefficients (7) was

, the order of Taylor series , and the number of
components of the LLGMN .

An example of the measured EMG of Subject F is shown
in Fig. 8. In this figure, four channels of the input EMG
and the force information are shown. We asked the
subject to perform the four motions continuously. From the
figure, it is shown that the EMG pattern is different for each
motion. The average of the discrimination rate with 20 trials
of these data was [%], where the initial weight
coefficients were changed in each trial. It should be noted that
the feature extraction of the EMG was implemented in the
software, and the FPGA was only discriminated in terms of
the EMG patterns.

The discrimination rates of the EMG measured from six
subjects are shown in Fig. 9, which are represented by the
software implementation of the LLGMN using C language and
the proposed hardware implementation of the LLGMN using
DSMs. In the experiments, we measured the EMG from each
subject five times, who performed the four motions continu-
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ously, and 20 trials were conducted with different initial weight
coefficients. From this figure, we confirmed that the proposed
network has a high accuracy of pattern discrimination at
the same level as the software implementation of LLGMN.
The discrimination rates of all the trials in the software
implementation of the LLGMN and the proposed PNN were

[%] and [%], respectively. Thus,
it is shown that the standard deviation of the discrimination
rates with the proposed network is slightly larger than those
of others, which is caused by calculation errors such as the
terms in the weight coefficients . Because the difference in
the discrimination rates between the software implementation
of the LLGMN and the proposed PNN is only 1.54 [%], it was
confirmed that the proposed PNN has a high performance in
the case of pattern discrimination for EMG patterns.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed the PNN using DS modulation
for implementation in digital hardware with the aim of re-

alizing a high accuracy of the discrimination for bioelectric
signals. We confirmed that the proposed network can be
decreased 2.13 [%] of digital circuit scales, and it can be
increased 12 [%] of calculation speed. Further, since the dis-
crimination rates of the proposed PNN was [%],
we showed that the proposed PNN has a high performance in
the case of the EMG discrimination as well.

Human-machine interface systems using EMGs, which were
developed in our previous studies [4]–[7], are very useful for
people with several physical disabilities. In the future, we
plan to study the human-machine interface using the proposed
PNN, and we intend to improve the decision algorithm of
the parameters, e.g., the terms in the weight coefficients .
Furthermore, we plan to realize an on-chip learning algorithm
using DS modulation on a FPGA.
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