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Abstract. Feature extraction is an important issue in electromyography
(EMG) pattern classification, where feature sets of high dimensionality
are always used. This paper proposes a novel classification method to
deal with high-dimensional EMG patterns, using a probabilistic neural
network, a reduced-dimensional log-linearized Gaussian mixture network
(RD-LLGMN) [1]. Since RD-LLGMN merges feature extraction and pat-
tern classification processes into its structure, lower-dimensional feature
set consistent with classification purposes can be extracted, so that, bet-
ter classification performance is possible. To verify feasibility of the pro-
posed method, phoneme classification experiments were conducted using
frequency features of EMG signals measured from mimetic and cervical
muscles. Filter banks are used to extract frequency features, and dimen-
sionality of the features grows significantly when we increase resolution
of frequency. In these experiments, the proposed method achieved con-
siderably high classification rates, and outperformed traditional methods
that are based on principle component analysis (PCA).

1 Introduction

Electromyography (EMG) pattern classification has been used to devise elab-
orate human-machine interfaces for people with physical disabilities [2], [3]. In
the recent years, multiple channels of amplitude and/or frequency information
of EMG signals have been increasingly used for EMG pattern classification to
achieve improved classification performance and to conduct multifunction my-
oelectric control [3], [4]. Dimensionality of feature grows dramatically when we
increase number of electrodes and frequency resolution, and pattern classifica-
tion is frequently confronted with high-dimensional data. As for high-dimensional
pattern classification, feature extraction is usually conducted prior to a classifi-
cation process, in order to find a compact feature set to avoid exhaustive com-
putation and to reduce statistically redundant/irrelevant attributes to improve
classification performance [5], [6].

In feature extraction techniques, original features (d-dimension) are projected
into an m-dimensional space, where m < d, and the m axes of the reduced feature
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space are determined according to some optimal criterion. Principal component
analysis (PCA) is one of most successful feature extraction techniques, and a
reconstruction error is utilized as the optimal criterion [6]. Up to present, PCA
has been widely used in pattern classification processes, such as face recognition
and text classification [7]. For EMG pattern classification, Du et al. and Engle-
hart et al. have applied PCA to EMG features for dimensionality reduction, and
neural networks (NNs) are used as classifiers [3], [4], [8].

Although PCA shows promising characteristics as a feature extractor in pat-
tern classification tasks, it still suffers from some intrinsic limitations. For in-
stance, optimal criterion of PCA is not directly related to training criteria of its
counterparts for pattern classification. Since training of the classification part
always aims to realize low error probabilities, it may not always be possible
for PCA to extract features in a reduced form, containing high discriminant
information [9], [10]. On the other hand, it should be noticed that, in the ex-
isting methods, training processes for PCA and the classification part are made
separately. Optimization of the whole pattern classification process is almost
impossible, and it is hard to gain a high performance of classification, especially
in practical applications, such as for EMG patterns.

To deal with these problems, Bu and Tsuji have proposed a probabilistic
neural network, a reduced-dimensional log-linearized Gaussian mixture network
(RD-LLGMN), for high-dimensional pattern classification [1]. RD-LLGMN uses
orthogonal transformation to project the original feature space into a lower-
dimensional space, and then calculates posterior probabilities with a Gaussian
mixture model (GMM) in the projected lower-dimensional space for classifica-
tion. Also, parameters in the network is trained with a single criterion, i.e.,
minimizing an error probability, it is expected that such training algorithm may
yield better classification performance [1], [9].

In this paper, a novel EMG pattern classification method is proposed based
on RD-LLGMN. With RD-LLGMN, it is expected that discriminative features
can be extracted from high-dimensional EMG patterns, and an efficient and
consistent classification is possible. Moreover, as an application, phoneme clas-
sification experiments are presented, in which frequency information of EMG
signals is extracted as feature pattern using filter banks. The rest of this paper
is organized as follows. Section 2 briefly introduces the conception and network
structure of RD-LLGMN. Then, in Section 3, the EMG pattern classification
method is proposed. Phoneme classification and experimental results are pre-
sented in Section 4. Finally, Section 5 gives a conclusion of this paper.

2 RD-LLGMN [1]

RD-LLGMN provides a novel feature extraction approach to find discriminant
features of a reduced size, and calculates posterior probabilities for classifica-
tion. There are two basic ideas in this NN: 1) orthogonal transformation, which
projects the original feature space into a lower-dimensional space, and 2) GMM,
which estimates probability distribution of patterns in the projected space. This
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Fig. 1. Structure of RD-LLGMN

network combines the feature extraction process with the classification part, and
is trained in a fashion of minimum classification error (MCE) learning [11], which
enables the classification part to realize a low error probability.

RD-LLGMN is a four-layer NN, the structure of which is shown in Fig. 1.
Given an input vector x ∈ �d, the first layer consists of d + 1 units, with one
unit has a bias input of 1. Identity function is used for activation of each unit.
Let (1)Oi denotes the output of the ith unit in the first layer, we have

(1)Oi =
{

1, i = 0
xi, i = 1, 2, · · · , d (1)

where xi (i = 1, 2, · · · , d) is the element of x.
In the second layer, the unit {c, k, 0}, (c = 1, · · · , C; k = 1, . . . , Kc), is a

bias unit, and its output (2)O0
c,k = 1. On the other hand, the unit {c, k, m}

(m = 1, · · · , Mc,k) receives the output of the first layer weighted by (1)Wm
c,k. The

input (2)Im
c,k and the output (2)Om

c,k, for (m �= 0), are defined as follows:

(2)Im
c,k =

d∑
i=1

(1)Oi
(1)Wm,i

c,k , (2)

(2)Om
c,k = ((2)Im

c,k)2, (3)

where C is the number of classes under consideration, Kc is the number of
components of the Gaussian mixture distribution corresponding to the class c,
Mc,k is the number of dimension of component k in class c. Through this layer,
vector x ∈ �d is projected into Mc,k-dimension spaces, Mc,k < d.

The unit {c, k} in the third layer sums up outputs of the second layer weighted
by coefficients (2)Wm

c,k. The relationships between the input of unit {c, k} in the
third layer ((3)Ic,k) and the output ((3)Oc,k) are defined as

(3)Ic,k =
Mc,k∑
m=0

(2)Om
c,k

(2)Wm
c,k, (4)

(3)Oc,k =
exp[(3)Ic,k]∑C

c′=1

∑Kc′
k′=1 exp[(3)Ic′,k′ ]

. (5)
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Fig. 2. Schematic view of the proposed method

In the third layer, RD-LLGMN calculates posterior probability of each Gaussian
component {c, k} using reduced-dimensional features.

The fourth layer consists of C units corresponding to the number of classes.
Unit c sums up outputs of Kc components {c, k} in the third layer. The function
between the input and the output is described as

(4)Oc = (4)Ic =
Kc∑
k=1

(3)Oc,k. (6)

After optimizing the weight coefficients with an MCE-based training algorithm,
RD-LLGMN’s output, (4)Oc, can estimate the posterior probability of class c.

3 EMG Pattern Classification Using RD-LLGMN

The proposed EMG pattern classification method, as shown in Fig. 2, consists
of three parts: (1) feature acquisition, (2) RD-LLGMN, and (3) decision rule.

L channels of EMG signals are recorded using surface electrodes attached
on muscles. From raw EMG signals, we can calculate amplitude and frequency
information to represent EMG features. Suppose that, from each channel, Z
features are obtained, the dimensionality of EMG features, d, equals L×Z. Also,
normalization method can be applied to decrease variability of EMG features.

For pattern classification, RD-LLGMN described in Section 2 is employed.
Using samples labeled with the corresponding motions, RD-LLGMN learns the
non-linear mapping between the EMG patterns and the motions. The normalized
patterns x(t) = [x1(t), x2(t), · · · , xd(t)]T are used as input to RD-LLGMN.

In this method, we assumed that the amplitude level of EMG signals is
changed in proportion to muscle force. A power level is defined as

FEMG(t) =
1
S

S∑
s=1

Es(t) − E
st

s

Emax
s − E

st

s

, (7)

where S indicates the number of electrodes, Es(t) is the filtered signal (cut-off
frequency: 1 Hz) of rectified raw EMG directly measured from the electrode s
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(s = 1, 2, · · · , S), E
st

s is the mean value of Es(t), which is measured while relaxing
the muscles, and Emax

s is the mean value of Es(t) measured under the maximum
voluntary contraction (MVC). FEMG(t) indicates the force information, and is
used to recognize whether the motion has really happened or not, by comparing
FEMG(t) with a predefined threshold Md.

Entropy of RD-LLGMN’s output is also calculated to prevent risk of mis-
classification. The entropy is defined as

H(t) = −
C∑

c=1

(4)Oc(t) log(4) Oc(t). (8)

If the entropy H(t) is less than a threshold Hd, the specific motion with the
largest probability is determined according to the Bayes’ decision rule. If not,
the determination is suspended.

4 Experiments

Phoneme classification based on EMG signals was conducted to examine per-
formance of the proposed method. In the experiments, EMG signals measured
from mimetic and cervical muscles were used to classify six Japanese phonemes
(C = 6: /a/, /i/, /u/, /e/, /o/, and /n/). Experiments were held with four
subjects (A, B, and C: healthy; D: a patient with cervical spine injury).

4.1 Phoneme Classification Experiments

In this study, cross-talks between EMG signals [12] are used, and a bank of
filters is applied to extract frequency features. The EMG signals are measured
with monopolar leads, and cross-talk signals can be derived as the difference
between potentials of every two electrodes. Three Ag/AgCl electrodes (SEB120,
GE marquette Corp.) with conductive paste were attached to muscles (M. De-
pressor Labii Inferioris (DLI), M. Zygomaticus Major (ZM), and M. Masseer
(MA)). EMG signals were recorded with a sampling frequency of 1 kHz. The
cross-talk between DLI and ZM was used as input channel one, the cross-talk
between DLI and MA as channel two, and the cross-talk between ZM and MA
as channel three. Each channel was then fed into a bank of Z band-pass filters
(BPFi, i = 0, · · · , Z − 1). Bandwidths of these filters were set as follows:

BPFi : 20 + σi [Hz] ∼ 20 + σ(i + 1) [Hz], (i = 0, 1, · · · , Z − 1). (9)

Here, σ = U/Z, and U is the range of spectrum under consideration. In the
phoneme classification experiments, U was set as 250 Hz, and the number of
band-pass filters Z as 6. After the filter-bank stage, the number of EMG features
d = 18, and these 18 channels of raw signals are rectified and filtered by a low
pass filter (cut-off frequency: 1 Hz). The filtered signals are defined as EMGi(t)
(i = 1, · · · , d), and normalized to make the sum of d channels equal to 1.0.

xi(t) =
EMGi(t) − EMG

st

i∑d
i=1 EMGi(t) − EMG

st

i

, (i = 1, · · · , d). (10)
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Fig. 3. Examples of the classification results using the proposed method (subject A).
(a: M. depressor labii inferioris, b: M. zygomaticus major, c: M. masseter.)

where EMG
st

i is the mean value of EMGi(t), which is measured while relaxing
the muscles.

Parameters of GMM in RD-LLGMN were set as: C =6, Kc =1 (c=1, · · · , 6).
Dimensions of the reduced subspaces Mc,k, (c = 1, · · · , C; k = 1), were set as
M = 9. In the training phase, 50 EMG patterns were extracted from EMG
signals of each phoneme, so that teacher signals consisted of C × 50 patterns.
The determination thresholds were set as Md = 0.08, and Hd = 0.5.

An example of the classification results (subject A) is shown in Fig. 3. In
this figure, three channels of raw EMG signals, three channels of cross-talk EMG
signals, the power level FEMG(t), the entropy H(t), and the classification results
are plotted. The gray areas indicate that no utterance was conducted because
the power level FEMG was less than Md. Although misclassification can be found
in utterance of /u/, /e/ and /o/, the classification results of RD-LLGMN are
relatively stable, and a high classification rate about 96.8% was realized in this
experiment. Also, for each misclassified utterance, the corresponding entropy is
high. It is believed that misclassification can be reduced using an appropriately
modulated threshold Hd.
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4.2 Comparison Experiments

Comparison experiments were conducted between the proposed method and
traditional pattern classification methods based on PCA with neural classi-
fier schemes. In the PCA part, original features are projected into a lower-
dimensional space on directions, which correspond to the M highest eigenvalues
of the covariance matrix. Feature vectors extracted with these M directions are
then fed into neural classifiers. In this paper, a log-linearized Gaussian mixture
network (LLGMN) [13] and a multilayer perceptron (MLP) [14], are used. LL-
GMN is a feedforward probabilistic NN based on GMM. The number of units
in the input layer of LLGMN was set equal to M . Units in the hidden layer
corresponded to the Gaussian components in GMM, which was set as one. The
output layer had six units, and each unit outputs posterior probability for the
input vector. On the other hand, the MLP had four layers. Number of units in
the first layer was set as M , in both hidden layers unit numbers were M × 10

3
(Here, factor 10

3 was chosen just for ease of setting the MLP), and in the output
layer there is six units. Each output of MLP corresponds to one phoneme, and it
was normalized to make the sum of all outputs equal 1.0, so that the normalized
outputs can be regarded as posterior probabilities of phonemes. Same values of
thresholds, Md and Hd, were used for three classification method.

In the comparison experiments, classification rates of three methods are eval-
uated by varying the dimensionality of input EMG features d and an extraction
rate (denoted as β), which stands for the ratio of M to d. The dimensionality
of input EMG features d varies when we changing the number of filters Z from
one to six. Five sets of randomly chosen initial weights were used to train each
sample data. The EMG signals for six phonemes used for test were about 30 sec-
onds. Figs. 4–6 depict mean values and standard deviations of the classification
rates of subject A for different parameter combinations:

d × β :

{
β ∈ [ 13 , 2

3 , 1] (d ∈ [3, 9, 15])

β ∈ [ 16 , 2
6 , 3

6 , 4
6 , 5

6 , 1] (d ∈ [6, 12, 18])
. (11)
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Fig. 4. Classification results using RD-LLGMN (Subject A)
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Fig. 6. Classification results using PCA with MLP (Subject A)

Please note that the directions of axes of d and β are reversed in the figures
of standard deviations to make them shown clearly. In these figures, it can be
found that RD-LLGMN achieved the best classification rates among all methods.
Since PCA and the neural classifiers are optimized separately based on different
training criteria, the features extracted may not always be consistent with the
purpose of classification, and their classification performance was poorer than
that of RD-LLGMN. Also, Since RD-LLGMN and LLGMN conduct classifica-
tion according to probabilistic characteristics of input features, higher classifica-
tion performance was achieved using RD-LLGMN and PCA with LLGMN than
PCA with MLP. Furthermore, we can find that when β increases classification
rates of all three method increase slightly. It is due to that more information is
used for pattern classification. However, computation complexity and time used
for training are significantly increased. On the other hand, when we increase
d, similar trend can be observed for RD-LLGMN and PCA with MLP. In con-
trast, classification rates of PCA with LLGMN method decrease for about 15%.
When increasing d, the entropy of LLGMN’s output increases at the same time.
Since the classification turned more ambiguous, more classification results were
suspended, which resulted in decrease in the classification rates of PCA with
LLGMN.

Finally, comparison experiments were conducted for four subjects. In these
experiments, dimension of the input EMG features (d) was 18, and dimension of
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Table 1. Comparison of classification rates for four subjects

C.R. : Classification rate [%], S.D. :  Standard  deviation [%]

Subject A
C.R.

S.D.

C.R.

S.D.

C.R.

S.D.

C.R.

S.D.

Subject B

Subject C

Subject D

88.473.470.0

69.631.165.0

92.279.849.0

90.376.644.3

5.46.5 2.8

8.50.18.1

6.20.05.1

3.40.84.5

Type of methods
PCA

with LLGMN

PCA

with MLP
RD-LLGMN

extracted feature set (M) was set as nine. Five sets of randomly chosen initial
weights were used to training of three methods. A summary of classification rates
for four subjects using three methods is shown in Table 1.

5 Conclusion

This paper proposes a novel classification method for multivariate EMG patterns.
This method uses a probabilistic NN, RD-LLGMN, for high-dimensional pattern
classification. With RD-LLGMN, discriminative information benefiting classifica-
tion can be extracted, and an efficient classification of motions is possible.

To examine the classification capability and the accuracy of the proposed
method, phoneme classification experiments have been carried out with five
subjects. A bank of filters is applied to acquire frequency features from cross-
talk EMG signals, and then the feature vectors are input into RD-LLGMN. In
the experiments, the proposed method achieved high classification performance.
Furthermore, comparison experiments were carried out between the proposed
method and two PCA-based traditional methods, and the proposed method
outperforms the other methods.

In Fig. 4, it can be found that standard deviations of the proposed method are
larger than that of PCA with LLGMN when β is small. A detailed investigation is
worthy to study stability of classification results of the proposed method. Also, in
the future research, we would like to improve the pre-processing method for EMG
signals, such as modulation of the parameters of filter bank and the low-pass
filtering for each raw cross-talk EMG signal. Better classification performance
would be available using combination of new pre-processing and RD-LLGMN.
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