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Abstract— This paper proposes a novel local discriminant
component analysis (DCA) algorithm that is useful for
pattern classification of high-dimensional data. Different
from most traditional methods, in which feature extractors
are usually used prior to a classifier, the proposed method
incorporates the feature extraction process into the classifier.
Then, a probabilistic neural network is developed based on
the idea of local DCA, in which the whole network including
the feature extractor and the classifier can be modulated
according to a single training criterion, so that features suited
to the classification purpose can be extracted. In this paper,
a hybrid training algorithm is proposed on the basis of the
minimum classification error (MCE) learning. In simulation
experiments, benchmark data are used to prove feasibility of
the proposed method.

Keywords-Gaussian mixture model; orthogonal transforma-
tions; multivariate analysis; discriminant component analysis

I. INTRODUCTION

Pattern classification is frequently confronted with high-
dimensional feature data in applications such as face
recognition and text classification [1],[2]. Usually, feature
extraction is conducted prior to a classification process,
in order to find a compact feature set to avoid ex-
haustive computation and to reduce statistically redun-
dant/irrelevant attributes to improve classification perfor-
mance [3]. In feature extraction techniques, original fea-
tures (d-dimension) are projected into an m-dimensional
space, where m < d, and the m axes of the reduced
feature space are determined according to some optimal
criterion, e.g., a reconstruction error in the PCA-based
feature extractor [4]. However, since optimal criteria are
frequently used for feature extraction, and most of them
are not directly related to training criteria of their coun-
terparts for pattern classification, it may not always be
possible to extract features in a reduced form containing
sufficient discriminant information [5]-[7].

So far, Fisher’s linear discriminant analysis (LDA) [4]
has also been widely used for feature extraction. The main
idea of LDA is to determine a set of discriminant vectors
in the subspace by maximizing a ratio of between-class
scatter (covariance) to within-class scatter (see [4] for
details). This ratio, also referred as the Fisher discriminant
function, illustrates linear separability of the classes under
consideration, so that the LDA feature extraction scheme

suits for finding discriminant features that are desired
for classification. Furthermore, it has been proven that
imposing an orthogonality constraint on the set of Fisher
discriminant vectors would lead to better discrimination
[8]. In the literature, a variety of LDA based feature extract
schemes have been proposed to improve classification
performance on high-dimensional data [7]-[11].

Although these LDA based schemes show promising
characteristics of feature extractor for classification tasks,
they still suffer from some intrinsic limitations. For in-
stance, since the Fisher discriminant criterion indicates
linear separability of the classes, the LDA schemes fail
for non-linear problems. To deal with non-linear problems,
mixture discriminant analysis (MDA) has been proposed
by extending LDA with normal mixtures [12]. Besides the
MDA, non-linear discriminant analysis (NLDA) was used,
which combines a multilayer perceptron (MLP) with the
Fisher discriminant function, trying to take advantage of
the approximating properties of MLP [13]. On the other
hand, it should be noticed that, in the existing discriminant
analysis methods, optimization processes of the feature
extractor and the classification part are made separately,
and the training criteria are usually different, since training
of the classification part always aims to reach a low error
probability. It is expected that training the feature extractor
and classification part together with a single criterion,
e.g., minimizing an error probability, would yield better
classification performance [6].

In this paper, we propose a novel feature extraction
approach using orthogonal transformation, which projects
the original input space into a lower-dimensional space,
and a Gaussian mixture model (GMM), which calculates
the posterior probabilities for classification. The proposed
method, referred as local discriminant component analysis
(DCA), uses mixture model of DCA to deal with data
of complicated distribution. Based on the idea of local
DCA, a probabilistic neural network (NN) is developed.
This network combines the feature extraction process with
the classification part, and is trained with the minimum
classification error (MCE) learning [14]. Introducing the
MCE learning is another major difference between the
proposed method and those conventional feature extractors
based on LDA. Rather than discriminability that is due
to the LDA, the proposed method is expected to extract
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features, which enable the classification part to realize a
low error probability.

The rest of this paper is organized as follows. Section
II introduces the conception of the local DCA, and further
develops a probabilistic NN based on it. Then, in Section
III, a training algorithm for the local DCA based on
the MCE learning is proposed. Experimental results for
benchmark dataset are presented in Section IV. Finally,
Section V gives a conclusion of this paper.

II. LOCAL DCA

A. Mixture of Gaussian Distributions in the Projected
Space

The Gaussian mixture model [4] is a commonly used
semi-parametric representation for modeling complicated
probability distributions. It is based on a linear combi-
nation of several components of simple Gaussian distri-
butions. In this paper, each Gaussian distribution is not
expressed by the original feature space S , but by a
reduced-dimensional space determined according to the
local DCA. Suppose, in the model, there are C classes,
and each class has Kc Gaussian components. Given the or-
thogonal transformation matrix for component k in class c
as Vc,k ∈ �d×Mc,k , (c = 1, 2, · · · , C; k = 1, 2, · · · , Kc),
the Mc,k-dimensional input vector of the projected space
Sc,k is as

xc,k = VT
c,k(x −µc,k), (1)

where x is the input vector expressed in space S , and µc,k

is the mean vector of component {c, k}. The covariance
matrix Rc,k ∈ �Mc,k×Mc,k is given by

Rc,k =
1

Nc,k

∑
x∈component{c,k}

xc,kxT
c,k . (2)

Here Nc,k indicates the number of input vectors belonging
to the component {c, k}. With the projected vector xc,k

and covariance matrix Rc,k defined above, the probability
density function (pdf) of {c, k} can be written as follows

P̂ (x|c, k) = (2π)−
Mc,k

2 |Rc,k|−
1
2 exp

[
−1

2
xT

c,kR
−1
c,kxc,k

]
.

(3)

Note that P̂ (x|c, k) in (3) does not mean the true pdf for
component {c, k}. It indicates the pdf in the discriminant
subspace of {c, k}, and the mark ˆ is used in this paper
for difference. Then, according to the Bayes theory, the
posterior probability of x, in a discriminant sense, is
defined as

P̂ (c, k|x) =
αc,kP̂ (x|c, k)∑C

c′=1

∑Kc′
k′=1 αc′,k′P̂ (x|c′, k′)

, (4)

P̂ (c|x) =
Kc∑
k=1

P̂ (c, k|x), (5)

where αc,k is the mixing coefficient for {c, k}, and it
equals to the prior probability of {c, k}, P (c, k).

B. Discriminant Analysis based on MCE

Introducing the MCE learning [14], the discriminant
function can be defined as

dc(x) = −P̂ (c|x) +


 1

C − 1

∑
c′,c′ �=c

P̂ (c′|x)η




1
η

, (6)

and the objective function for each input x is given as:

E(x) =
C∑

c=1

Ec(x)I(x ∈ c), (7)

where I(s) = 1 if the statement s is true, otherwise 0, and
Ec(x) is defined in the form as

Ec(x) =
1

1 + e−ξdc(x)
. (8)

The parameters η and ξ are positive constants, and should
be predefined. Since (6) provides a precise misclassifi-
cation measure, and minimizing the objective function
(7) will result in the minimum error probability. In the
proposed method, the orthogonal transformation matrices,
Vc,k (c = 1, 2, · · · , C; k = 1, 2, · · · , Kc), are modulated
by minimizing (7), and the remained Mc,k features are
assumed to provide the most discriminant information for
classification in component {c, k}.

C. A Probabilistic NN

It is worth noting that the covariance matrix Rc,k can
be reduced to a diagonal matrix Λc,k by an orthogonal
similarity transformation [15]:

Rc,k = Qc,kΛc,kQT
c,k, (9)

where Qc,k is constructed by Mc,k eigenvectors of Rc,k,
q1

c,k, q2
c,k, · · · , qMc,k

c,k , and Λc,k has the associated eigen-

values, λ1
c,k , λ2

c,k, · · · , λ
Mc,k

c,k , as its diagonal elements.
Replacing xc,k and Rc,k in (3) with (1) and (9), we have

P̂ (x|c, k) = (2π)−
Mc,k

2 |Rc,k|−
1
2 exp

[
−1

2
(x− µc,k)T

Vc,kQc,kΛ
−1
c,kQ

T
c,kV

T
c,k(x −µc,k)

]
.(10)

Let us define a new orthogonal transformation matrix

Wc,k = Vc,kQc,k, (11)

and a new projection of input vector x on the subspace
Sc,k

x′
c,k = WT

c,k(x −µc,k)

= WT
c,kx −WT

c,kµc,k. (12)

Therefore the mth element of projected vector x′
c,k, x′m

c,k,
can be expressed as

x′m
c,k = Wm

c,k
Tx− Wm

c,k
Tµc,k

= βm
c,k

TX, (13)
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Figure 1. Structure of the probabilistic NN based on local DCA proposed in this paper.

where Wm
c,k is the mth row of Wc,k ; XT = [1, xT] the

modified input vector; and

βm
c,k

T = [−W m
c,k

Tµc,k , wm,1
c,k , · · · , wm,d

c,k ]. (14)

With (11)-(13), (10) can be simplified as

P̂ (x|c, k) = (2π)−
Mc,k

2 |Rc,k|−
1
2 exp


−

Mc,k∑
m=1

(x′m
c,k)2

2λm
c,k




= exp

(
−Mc,k

2
log 2π − 1

2
log |Rc,k|

−
Mc,k∑
m=1

(x′m
c,k)2

2λm
c,k

)

= exp
[
X′

c,k
T
ψc,k

]
. (15)

where X′
c,k = (1, (x′1

c,k)2, (x′2
c,k)2, · · · , (x′d

c,k)2)T, and

ψc,k = (−Mc,k

2
log 2π − 1

2
log |Rc,k|,− 1

2λ1
c,k

,− 1
2λ2

c,k

,

· · · ,− 1
2λd

c,k

)T. Applying the newly defined vectors, βm
c,k

and ψc,k, as the weight coefficients, the local DCA algo-
rithm can be developed into a network structure.

It should be mentioned that the orthogonal transfor-
mations and modifications of (9)-(15) do not change the
characteristics of the projected subspace Sc,k determined
by Vc,k , but facilitate the development of the local DCA
algorithm into a probabilistic NN.

The proposed probabilistic NN is the four-layer feed-
forward NN, the structure of which is shown in Fig. 1.
The first layer consists of d + 1 units corresponding to
the dimension of X, and the identity function is used for
activation of each unit. Let (1)Oi (i = 0, · · · , d) denote
the output of the ith unit in the first layer, we have

(1)Oi =
{

1, i = 0
xi, i = 1, 2, · · · , d

(16)

where xi, i = 1, 2, · · · , d, is the element of x.
In the second layer, the unit {c, k, 0}, (c = 1, · · · , C;

k = 1, · · · , Kc), is the bias unit, and its output
(2)O0

c,k = 1. On the other hand, the unit {c, k, m},

(m = 1, · · · , Mc,k), receives the output of the first layer
weighted by (1)Wm

c,k . The input ((2)Im
c,k) and the output

((2)Om
c,k), for m �= 0, are defined as follows:

(2)Im
c,k =

d∑
i=1

(1)Oi
(1)Wm,i

c,k , (17)

(2)Om
c,k = ((2)Im

c,k)2. (18)

The unit {c, k} in the third layer sums up the outputs of
the second layer and outputs the posterior probability of
each Gaussian component defined in (4). The relationships
between the input of unit {c, k} in the third layer ((3)Ic,k)
and the output ((3)Oc,k) are defined as

(3)Ic,k =
Mc,k∑
m=0

(2)Om
c,k

(2)Wm
c,k , (19)

(3)Oc,k =
exp[(3)Ic,k ]∑C

c′=1

∑Kc′
k′=1 exp[(3)Ic′,k′]

. (20)

The fourth layer consists of C units corresponding to
the number of classes. The unit c sums up the outputs
of Kc components {c, k} in the third layer. The function
between the input and the output is described as

(4)Oc = (4)Ic =
Kc∑
k=1

(3)Oc,k, (21)

where the output (4)Oc corresponds to the posterior prob-
ability of class c (see (5)).

If data are expressed by the GMM with the original
dimension d, the parameters in the model include the d-
dimensional mean vectors, the d-by-d covariant matrices,
and the mixing coefficients in all components. Table I
gives the comparison of the numbers of parameters in
the GMM of dimension d, the local DCA, and the NN
structure. It is clear that, when the reduced dimension
Mc,k is small, the proposed local DCA algorithm and the
corresponding NN would dramatically reduce the param-
eter numbers, and consequently lighten the computation
burden.



TABLE I

COMPARISON OF THE NUMBERS OF PARAMETERS IN THE GMM OF

DIMENSION d, THE LOCAL DCA, AND THE NN STRUCTURE.

Numbers of parameters

GMM of dimension d
�

c

�
k

1
2
(d + 1)(d + 2)

Local DCA
�

c

�
k 1 + 1

2
(d + Mc,k)(1 + Mc,k)

NN structure
�

c

�
k 1 + (d + 2)Mc,k

III. TRAINING ALGORITHM FOR LOCAL DCA

In the training procedure, a set of vectors
(x1, · · · , xN) and the corresponding teacher vector
Tn = (Tn1, · · · , Tnc, · · · , TnC) (n = 1, · · · , N) are
used. The teacher vector provides perfect classification,
that is, Tnĉ = 1 for the particular class ĉ and Tnc = 0 for
the other classes. The objective function based on MCE
is

E =
N∑

n=1

E(xn) =
N∑

n=1

C∑
c=1

Ec(xn)Tnc. (22)

A. A Gradient Descent Training Algorithm

For the training of the NN introduced in II-C, the
gradient descent of (1)Wm

c,k and (2)Wc,k can be derived
as follows:

∂E(xn)
∂(1)Wm

c,k

=
C∑

h=1

∂E(xn)
∂Eh(xn)

∂Eh(xn)
∂dh(xn)

[
C∑

i=1

∂dh(xn)
∂P̂ (i|xn)

×
Ki∑
j=1

∂P̂ (i, j|xn)
∂P̂ (xn|c, k)

]
∂P̂ (xn|c, k)
∂X′

c,k(n)
∂X′

c,k(n)
∂(1)Wm

c,k

=
C∑

h=1

TnhξEh(xn)(1 − Eh(xn))

[
C∑

i=1

∂dh(xn)
∂P̂ (i|xn)

×(δi,c − P̂ (i|xn))

]
P̂ (c, k|xn)

−x′m
c,k(n)

λm
c,k

Xn,

(23)

and

∂E(xn)
∂(2)Wc,k

=
C∑

h=1

∂E(xn)
∂Eh(xn)

∂Eh(xn)
∂dh(xn)

[
C∑

i=1

∂dh(xn)
∂P̂ (i|xn)

×
Ki∑
j=1

∂P̂ (i, j|xn)
∂P̂ (xn|c, k)

]
∂P̂ (xn|c, k)
∂(2)Wc,k

=
C∑

h=1

TnhξEh(xn)(1 − Eh(xn))

[
C∑

i=1

∂dh(xn)
∂P̂ (i|xn)

×(δi,c − P̂ (i|xn))

]
P̂ (c, k|xn)X′

c,k(n), (24)

where Xn and X′
c,k(n) denote the modified input vector

and the modified projected vector (see (13) and (15)) corre-
sponding to xn; δi,c is the Kronecker delta: δi,c = 1 when
i = c, and δi,c = 0 otherwise. As a result, a backpropa-
gation training algorithm for (1)Wm

c,k and (2)Wc,k can be
derived. Unfortunately, due to the stochastic constraints of
the parameters and interdependency between the eigenval-
ues and the eigenvectors, the weight coefficients cannot be
modulated arbitrarily, and convergence of the weights is
not confirmed. Alternatively, we propose a hybrid training
algorithm for the local DCA in this paper, and the weights
in the NN structure are computed according to (11), (14)
and (15).

B. A Hybrid Training Algorithm

According to the notation of the local DCA algorithm,
modification of the mth transformation vector in matrix
Vc,k, V m

c,k , is given as

∆V m
c,k = −γ

N∑
n=1

∂E(xn)
∂V m

c,k

, (25)

where γ > 0 is the learning rate, and the vector ∂E(xn)
∂V m

c,k

can be derived as follows:

∂E(xn)
∂V m

c,k

=
C∑

h=1

∂E(xn)
∂Eh(xn)

∂Eh(xn)
∂dh(xn)

[
C∑

i=1

∂dh(xn)
∂P̂ (i|xn)

×
Ki∑
j=1

∂P̂ (i, j|xn)
∂P̂ (xn|c, k)

]
∂P̂ (xn|c, k)

∂xc,k(n)
∂xc,k(n)

∂V m
c,k

=
C∑

h=1

TnhξEh(xn)(1 − Eh(xn))

[
C∑

i=1

∂dh(xn)
∂P̂ (i|xn)

×(δi,c − P̂ (i|xn))

]
P̂ (c, k|xn)

×− xc,k(n)TR−1
c,k

∂xc,k(n)
∂V m

c,k

, (26)

where xc,k(n) is the projection of the input vector xn on
the subspace Sc,k, and

∂dh(xn)
∂P̂ (i|xn)

=




−1, h = i

P̂(i|xn)η−1

C−1

[�
l,l �=i P̂ (l|xn)η

C−1

] 1
η −1

, h �= i

(27)

∂xc,k(n)
∂V m

c,k

= [0, 0, · · · , xn, · · · , 0]T. (28)

∂xc,k(n)
∂V m

c,k
is an Mc,k × d matrix, where 0s stand for zero

vectors of dimension d, and the vector xn is its mth
column. Then new V m

c,k at training iteration t + 1 is
modified in the form

V m
c,k(t + 1) = V m

c,k(t) + ∆V m
c,k. (29)



To keep the basis of each subspace Sc,k be orthonormal,
after the transformation vectors are updated, the Gram-
Schmidt orthogonalization process [15] is applied. Accord-
ing to the adaptive subspace theory, if the learning rate γ
is selected sufficiently small, the orthonormal bases of the
subspaces will converge [6],[16].

To complete the training algorithm, we also need mod-
ification rules for αc,k and µc,k. In this paper, these
parameters are updated in a way similar to an iterative
EM algorithm for mixture models [17]. As αc,k is the
prior probability P (c, k), it can be expressed as

αc,k = P (c, k) =
N∑

n=1

P (c, k|xn)P (xn). (30)

Let us assume that P (xn) = 1/N (n = 1, · · · , N), and
substitute the P (c, k|xn) with P̂ (c, k|xn). Then, we get

αc,k =
1
N

N∑
n=1

P̂ (c, k|xn). (31)

A normalization process is used to satisfy the constraint
that

∑
αc,k = 1. Similarly, the update for each mean

vector, µc,k, is given as

µc,k =
∑N

n=1 P̂ (c, k|xn)xn∑N
n=1 P̂ (c, k|xn)

. (32)

To prevent the mean vectors move out of its corresponding
class’s range, summations in (32) can be made just over
vectors belonging to class c.

Then, details of the proposed hybrid training scheme is
as follows:

1) Step 1 Initialization:
a) Set the mean vectors of Kc components in

class c with Kc input vectors, which are ran-
domly selected from the training data belong-
ing to class c

b) Initialize the transformation matrices with ran-
domized values, and then perform the Gram-
Schmidt process.

c) Set αc,k with a randomized value, and let∑
αc,k = 1.

2) Step 2 Compute the posterior probability:
a) Transform input vectors into each subspace of

component {c, k}, and calculate the covariance
matrix Rc,k, using (1) and (2).

b) Compute the posterior probabilities for all in-
put vectors, xn(n = 1, 2, · · · , N), according
to (3)-(5).

3) Step 3 Compute the objective function:

a) Compute the objective function using formulas
(6)-(8) and (22).

b) Stop the training procedure, if iteration number
reaches a predefined number or the objective
function is smaller than a preset value; other-
wise go to Step 4.

TABLE II

CLASSIFICATION RESULTS ON THE TRAINING SET AND THE TEST SET

FOR M = 2, 3, 4.

Training set Test set

M = 2 75.83 ± 6.22 70.50 ± 3.79

M = 3 91.13 ± 2.04 87.50 ± 1.84

M = 4 90.73 ± 2.92 87.00 ± 3.09

Mean ± S.D. [%]

4) Step 4 Update parameters:

a) Update orthonormal bases using the gradi-
ent descent training, then perform the Gram-
Schmidt process.

b) Update αc,k and µc,k for each component
{c, k}.

c) Go to Step 2.

IV. EXPERIMENTS

In this section, we conduct experiments to exam the
feasibility of the proposed algorithm. The Ionosphere data
used in the experiments are taken from the UCI machine
learning repository†.

The Ionosphere data have 34 numerical features, and
there are two classes in this dataset. In the experiments,
for each class, numbers of instances used for the training
set and the test set were 150 and 100, respectively. The
numbers of components in each class were set to one.
The dimension of each reduced subspace, Mc,k (c =
1, · · · , C; k = 1, · · · , Kc), was set as M = 2, 3, 4. The
learning rate γ was 1.0 × 10−4. The training process is
terminated in each experiment, if the iteration number
reaches 105 or objective function is smaller than 0.1.

Table II depicts the mean values and standard deviations
of the classification rates, for ten independent successful
trials, on the training set and the test set in the cases
where M = 2, 3, 4. Although similar results were obtained
for M = 3 and M = 4, it should be remarked that the
convergence of training was much difficult when M = 4.
On the other hand, when the number of dimension was
not set appropriately, e.g., M = 2, the classification
performance degrades remarkably.

The performance of the local DCA was compared
with results of four traditional methods reported in [7].
Feature extractions (FEs) used in these methods are the
conventional PCA, the parametric eigenvalue-based FE,
the nonparametric eigenvalue-based FE, and no feature
extraction (Plain). The parametric eigenvalue-based FE is
a LDA based method, and the nonparametric eigenvalue-
based FE is similar to the idea of MDA. After the
feature extraction process, a nearest neighbor classification
technique was applied [7]. The comparison results are
shown in Table III. When M = 3 and 4, the proposed local

†http://www.ics.uci.edu/˜mlearn/MLRepository.html



TABLE III

COMPARISON OF CLASSIFICATION RATES BETWEEN THE LOCAL DCA

AND FOUR COMPARISON METHODS REPORTED IN [7].

Mean classification The number
rate [%] of features

The proposed 70.50 2
local DCA 87.50 3
method 87.00 4
Comparison PCA 87.20 9
methods Parametric FE 84.30 1
reported Nonparametric FE 84.40 2
in [7] Plain 84.90 34

DCA method achieved high classification rates. Especially,
when M = 3, the proposed method outperforms all other
methods.

V. CONCLUSION

This paper proposed a novel feature extraction scheme, a
local DCA, for multivariate pattern classification. Distinct
from the previous studies, the feature extraction process
and pattern classification part of the proposed method are
wholly merged into one framework, and the parameters are
modulated to minimize the MCE criterion, which enables
the features extracted to contain discriminant information.
Experiments on benchmark dataset proved the feasibility
of the proposed method. It is found that with an ap-
propriate dimension number for the reduced space, the
proposed method outperforms all other methods used in
the comparison.

Since there are still some problems with the convergence
of training, in our future research, we would like to im-
prove the convergence properties of the proposed training
algorithm for local DCA. It is also interesting to study the
properties of the orthonormal bases obtained with local
DCA experimentally and theoretically.
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