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��������—Since a probabilistic neural network (PNN) pro-
vides a stochastic perspective of pattern discrimination, it has
been proven to be efficient for complicated data such as bioelec-
tric signals. As for practical implementation, however, a general-
purpose computer is usually necessary, so that a compact design
of an application system is difficult to be realized. This paper de-
scribes a field programmable gate array (FPGA) implementation
of a PNN, with which system on chip (SoC) design of a bioelectric
human interface device becomes possible. Its effectiveness is then
verified with a practical application, and it is shown that the hard-
ware implementation provides comparable performance with the
software solution on a general-purpose computer.

I. INTRODUCTION

In the context of pattern discrimination, probabilistic neu-
ral networks (PNNs) have been widely studied [1]-[3]. Due
to the prominent nonlinear approximation capability of PNNs,
it is expected that, by training the network architecture and
the weights appropriately, PNNs can estimate the real poste-
rior probability distribution of input patterns with arbitrary ac-
curacy. Recently, PNNs have been used as an important tool
for pattern discrimination, and have been proven to be efficient
especially for complicated problems such as classification of
bioelectric signals.

In [2], Tsuji et al. proposed a PNN, called a log-linearized
Gaussian mixture network (LLGMN), which estimates the pos-
terior probability based on a Gaussian mixture model (GMM)
and the log-linear model. Although weights of the LLGMN
correspond to a nonlinear combination of the GMM parame-
ters, such as the mixture coefficients, mean vectors, and co-
variance matrices, constraints on the parameters in the statis-
tical model are relieved in the LLGMN. Therefore, a simple
learning algorithm can be derived, and the LLGMN is expected
to have high performance in the case of statistical pattern dis-
crimination. The LLGMN has been successfully applied to pat-
tern discrimination of bioelectric signals, e.g., electromyogram
(EMG) and electroencephalogram (EEG), and has been further
used to develop various human interface applications like pros-
thetic device control, an EMG-based pointing device, and so on
[4]-[6].

So far, software implementation of the LLGMN on a general-
purpose computer is usually adopted. However, development
of practical human interface applications is quite difficult, since
this kind of applications requires the interface devices to be
compact and portable, especially in the design of wearable and
handheld devices like the EMG-controlled prosthetic limbs.
Also, in cases where real-time processing is necessary (e.g., the
EMG-based pointing device), implementation of the LLGMN
in software would increase the CPU load dramatically. To deal
with these problems, a dedicated digital hardware realization of
LLGMN is required.

In recent years, continuous performance increase has been
conducted in the field of digital hardware. Also, due to the re-
liability, programmability and availability of numerous design
tools, various neural networks have been implemented on digi-
tal hardware [7]-[9]. In this paper, we describe the digital real-
ization of LLGMN on a field programmable gate array (FPGA)
chip, and verify it on the EMG-based pointing device system
[5]. The FPGA is chosen in contrast to other digital platform
(e.g., application specific integrated circuit (ASIC)), since the
FPGA is flexible in practical application under consideration,
i.e., it can be reconfigured at will. Furthermore, there are many
commercial off the shelf chips available, which make the de-
velopment cost rather small.

In the following section, a brief review of the LLGMN is de-
scribed. Then, section III introduces some issues of the FPGA
implementation of LLGMN and its performance. Experimen-
tal results of a bioelectric human interface system, that is the
EMG-based pointing device integrated on one FPGA chip, are
presented in Section IV. Finally, Section V gives some discus-
sions and a summary of the paper.

II. LLGMN

The LLGMN [2] is based on the GMM and the log-linear
model of probability distribution function (pdf). By applying
the log-linear model to a product of the mixture coefficient and
the mixture component of GMM, the semiparametric model of
pdf is incorporated into a three-layer feedforward NN (Fig. 1).

First, in the pre-process, the input vector x ∈ �d is converted
into the modified vector X ∈ �H as follows:

X = (1,xT, x1
2, x1x2, · · · , x1xd, x2

2, x2x3, · · · ,
x2xd, · · · , xd

2)T (1)

where xi, i = 1, 2, · · · , d, are the elements of x and H =
1 + d(d + 3)/2. The first layer consists of H units correspond-
ing to the dimension of X and the identity function is used for
activation of each unit. (1)Oh (h = 1, · · · , H) in Fig. 1 denotes
the output of the hth unit in the first layer.

In the second layer, each unit receives the output of the first
layer weighted by the weight w

(c,m)
h (c = 1, · · · , C; m =

1, · · · , Mc) and outputs the posterior probability of each Gaus-
sian component. Here, C denotes the number of classes, and
Mc is the number of Gaussian components in class c. The rela-
tionships between the input of unit {c, m} in the second layer
((2)Ic,m) and the output ((2)Oc,m) are defined as

(2)Ic,m =
H∑

h=1

(1)Ohw
(c,m)
h (2)

(2)Oc,m =
exp[(2)Ic,m]∑C

c′=1

∑Mc′
m′=1 exp[(2)Ic′,m′ ]

(3)
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Fig. 1. Structure of LLGMN [2].

where w
(C,MC)
h = 0 (h = 1, · · · , H).

The third layer consists of C units corresponding to the num-
ber of classes. The unit c sums up the outputs of Mc com-
ponents {c, m} in the second layer. The function between the
input and the output is described as

(3)Oc = (3)Ic =
Mc∑

m=1

(2)Oc,m (4)

where the output (3)Oc corresponds to the posterior probability
of class c.

A simple back-propagation training algorithm is feasible [2].
Consider a training set {x(n),T(n)} (n = 1, · · · , N), where

T(n) = {T (n)
1 , · · · , T (n)

C }. If the input vector x(n) belongs to

class c, T
(n)
c = 1, and T

(n)
c′ = 0 for all of the other class c′.

An energy function, which is the negative log-likelihood, can
be defined as:

J = −
N∑

n=1

C∑
c=1

T (n)
c log(3) O(n)

c . (5)

When probabilistic teacher signals that take continuous values
of {0, 1} are used, instead of (5), an energy function based on
the Kullback information criterion is introduced

J ′ = −
N∑

n=1

C∑
c=1

T (n)
c (log(3) O(n)

c − log T (n)
c ). (6)

In the training process, weight w
(c,m)
h is modified to minimize

the energy function ((5) or (6)). In what follows, the LLGMN
is expected to approximate the posterior probability P (c|x),
when an input vector x is presented.

III. FPGA IMPLEMENTATION

A. Basic Design

Before proceeding hardware implementation of the LLGMN,
one must consider some important issues, such as the length
of data representation, realization of the non-linear operations
involved in the LLGMN’s algorithm, the processing speed, the
FPGA chip size, etc. In this paper, a fixed-point format of data
representation is used to speed the processing up. Numbers of
bits for the integer and the fractional parts should be determined
with respect to the evaluation criteria of the given application.

In the LLGMN’s algorithm, exponential and logarithmic
functions are involved. One straightforward and efficient im-
plementation of these non-linear functions is using a look-up
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Fig. 2. The LUT-based exponential function.
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Fig. 3. Scatter graph of discrimination data (100 data/class).

table (LUT). This method usually requires a large number of
registers, so that more chip area is needed for LUT. To over-
come this problem, the spacing of two adjacent breakpoints
is modulated according to the characteristics of corresponding
functions. For the LUT of the exponential function, for exam-
ple (see Fig. 2), the spacing is wider on the side (a), where
the output value Y varies much less than that of the opposite
side (c). The spacing of the breakpoints is set as 2l (l ∈ Z)
in order to speed the computation up using the table. In this
paper, the input domain of the exponential function is simply
divided into three ranges: [−10,−5), [−5, 5] and (5, 10], and
the corresponding spacing as: 0.5, 0.25 and 0.125.

Also, pipeline processing is utilized in the proposed design
to gain high throughput, and to ease the bottleneck of data ex-
change between FPGA chip and external memories. Further-
more, in order to improve the processing speed, some multi-
plications by given constants are substituted with bit shifting
operations.

B. Implementation and Performance Evaluation

We implemented the LLGMN on a development board
(RC1000, Celoxica) hosting a Xilinx Virtex family BG560
FPGA chip with up to two million system gates (XCV2000E-
6BG560). On RC1000, there is 8Mb of SRAM directly con-
nected to the FPGA in four 32-bit wide memory banks. The
LLGMN hardware is described in Handel-C language and de-
signed with the Celoxica DK2 design suite.

Pattern discrimination experiments on artificial data were
conducted to compare the LLGMN based on hardware with the
one based on software (C language). There are two classes
(C = 2) on a two-dimensional input space; each consists of
two Gaussian sources (Mc = 2). The centers of Gaussian dis-
tributions in class one are (0.35, 0.35) and (−0.35,−0.35), in
class two (0.35,−0.35) and (−0.35, 0.35), and all have a vari-
ance of 0.0225. Examples of the data are shown in Fig. 3,
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Fig. 4. Structure of the EMG-based pointing device system.

TABLE I

EVALUATION RESULTS ON THE ERROR.

Mean S. D. Maximum Minimum
0.831 × 10−2 0.0118 0.0826 0.70 × 10−5

where the samples from the two classes are represented by ◦
and ×. For each class, we generated 100 samples for on-chip
learning, and then validate the trained LLGMN chip with test
data (1000 samples per class). The theoretical limit of the error
probability for the test dataset is 2.00%.

The classification rates of the implementations on software
and hardware are 97.8%, and 97.9%, respectively. The compu-
tational accuracy of hardware implementation is evaluated with
a mean squared error as

err(t) =
1
C

C∑
c=1

√
(PS(c|x(t)) − PH(c|x(t)))2 (7)

where PS(c|x(t)) and PH(c|x(t)) indicate the posterior proba-
bility of the input pattern x(t) computed in software and hard-
ware, respectively. Some statistics on the error are shown in Ta-
ble I. It is believed that this error can be reduced by further im-
proving the approximation accuracy of LUT and the precision
of data representation. In general, the LLGMN implemented
in hardware can perform almost the same as the one realized in
software.

In the training process, it was verified that 517 clock cycles
were necessary for training of one sample datum, and a batch
training [10] (on 200 training samples) requires 103488 cycles.
As for discrimination phase, it costs 247 cycles for processing
one datum. It was confirmed that a clock frequency of 20 MHz
was realized.

IV. APPLICATION TO A BIOELECTRIC HUMAN INTERFACE

SYSTEM

The FPGA implementation of PNNs is very meaningful for
design of a compact human interface device, because an SoC
design of stand-alone intelligent application becomes feasible
with other relevant modules being integrated into the same
FPGA. To verify this idea, the EMG-based pointing device
called EMG-mouse [5], which is based on the LLGMN, was
implemented on one FPGA chip.

The EMG-mouse system, as shown in Fig. 4, consists of three
parts: (1) EMG signal processing, (2) Neural network, and (3)
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Fig. 5. Trajectories of pointer.

Pointer control. It provides an interface tool for wearable com-
puters and mobile devices. In the EMG-mouse, the LLGMN is
used to estimate probabilities of the operator’s intended move-
ment on a finite number of base directions. Then the pointer
movement can be represented by combining these base direc-
tions (for details, see [5]). In this paper, all three parts are im-
plemented on one FPGA chip. The EMG signals measured
from four pairs of electrodes are amplified and digitized by an
AD converter, and then input to the FPGA. The EMG-mouse
system determines the direction of pointer’s movement and its
speed from the EMG signals, and the results are output to a
display.

To examine the performance of the FPGA implementation of
the EMG-mouse system, we conducted pointer control exper-
iments. First, the LLGMN was trained with operator’s EMG
patterns corresponding to four base directions (up, right, down,
and left). Then, the operator was asked to control the pointer to
draw triangles/rectangles after the arrows’ directions in the turn
of the labels. Fig. 5 shows examples of the pointer trajectories.
The detailed time histories of the drawing-a-triangle task, that
is corresponding to Fig. 5 (a), is shown in Fig. 6. In this figure,
the desired direction, the EMG signals, the posterior probabil-
ity of each base direction output from the LLGMN module,
the estimated movement direction, and the force level are plot-
ted. The gray areas indicate that no movement was determined
since the force level is less than a predefined threshold. It can
be seen that, with the EMG-mouse system implemented on an
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Fig. 6. An example of pointer control for drawing-a-triangle task.

FPGA chip, the pointer can be controlled approximately along
the intended direction by the operator.

V. CONCLUSION

In this paper, we have discussed the FPGA implementation of
the probabilistic NN, LLGMN, and a bioelectric human inter-
face system based on it. It can be found that the FPGA imple-
mentation performs a comparable accuracy with the traditional
solution based on a general-purpose computer. Furthermore, a
human interface system realized on one FPGA chip provides
much more portability, and is more compact in size. These
features of the FPGA-based human interface system may be
beneficial for wearable computers and other handheld devices.
Because our research is still in its infancy, many efforts are
needed for further development.

The LUT has been used to represent non-linear functions in
the LLGMN. As mentioned in Section III, the LUT is recourse
consuming, and there is a trade-off between the approximation
accuracy of LUT and the chip area needed. This problem is
non-trivial in cases of implementation of larger and more com-
plicated neural networks, and more hardware efficient algo-
rithms are required. The coordinate rotation digital computing
(CORDIC) algorithm may be such a time and space efficient
algorithm mainly used for calculation of the sine and cosine of
a given angle. It can be also used for computing log, exponent
and square root [11], [12].

In our research, the shortage of chip space is also due to
the hardware description by the Handel-C language. Although
Handel-C is friendly to system designers, it is observed that
hardware designed using Handel-C is usually several times
larger than the VHDL or Verilog-HDL implementation [13].
Therefore, incorporating intellectural property (IP) core in
VHDL or Verilog-HDL language would be helpful.

In future research, we would like to develop the hardware im-
plementation of LLGMN in a more compact size. Also, we

would keep our concentration on the improvement of process-
ing speed.
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