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Abstract

Electromyogram (EMG) has been often used as a
control signal for a prosthetic arm, which includes
information on the operator’s motor intentions and
the mechanical impedance of joints. Most previous
research adopted the control methods of the pros-
thetic arms based on the EMG pattern discrimination
and/or the force estimation from the EMG signals,
and did not utilize any knowledge on tasks performed
by amputees such as a grasping-an-object and a soup-
spooning task. In this paper, ¢ new myoelectric con-
trol method is proposed using a statistically organized
neural network and an event-driven task model. The
task model i3 represented using a Pelri net to de-
scribe the task dependent knowledge, which is used
to modify the neural network’s output. Ezperimental
results show that the use of the task model signif-
icantly improves the accuracy of the EMG pattern
discrimination.

1 Introduction

There are many people who have lost their extremi-
ties by industrial accidents, traffic accidents or other
afflictions. Since it may be very difficult for them to
perform precise and complicated work in their daily
activities, development of buman-assisting devices is
very important and necessary to assist their daily ac-
tivities and epable them to be engaged again in the
production activity.

The electromyogram (EMG) is oﬁ;en used as an in-
terface tool for a prosthetic hand. The EMG signal
contains a lot of information such as human intended
motions, muscle force, and joint impedance proper-
ties. Akazawa et al. [1] estimated forces of flexors
and extensors from the EMG signals, and proposed a
scheme to use the EMG signals for controlling a pros-
thetic hand. Ito et al. [2] used amplitude information
of EMG signals like the speed conirol command of
the prosthetic forearm. Also, Abul-haj and Hogan (3]
proposed the control method of the prosthetic hand
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based on an impedance model and analyzed the con-
trol characteristics.

On the other hand, many studies of the EMG pattern
discrimination have been carried out for prosthetic
control. In the first stage of this research, linear
prediction models for EMG signals were frequently
used [4], [5]. However, it was very difficult to achieve
high discrimination performance, especially for rapid
movements, because of nonlinear characteristics and
the large variability of the EMG signals. Under such
situations, EMG pattern discrimination methods us-
ing neural networks have been proposed [6]-[8]. The
neural networks can acquire the nonlinear mapping
between the input patterns and the discriminating

.classes.

While BPN [9] is utilized in most previous studies,
Tsuji et al. proposed the log-linearized Gaussian
mixture network (LLGMN) [10] based on a log-linear
model and a Gaussian mixture model. This network
realized higher discrimination performance than that
of BPN [11]. However, it is difficult to discrimi-
nate the mixed metion in which the hand motion
and the wrist motion occur at the same time. Also,
the EMG patterns are greatly changed depending on
tasks and the operator’s arm positions during daily
activities, so that the discrimination performance de-
creases even if the operator is well trained and con-
centrates the EMG operation properly.

This paper proposes a new myoelectric control
method, which combines an event-driven task model
with the motion discrimination method by using LL-
GMN. Most tasks that are performed by a huran
operator are composed of a series of several motions, -
and they can be described using an event-driven
model. In the proposed method, the operator’s in-
tended motion is discriminated by using LLGMN,
and this discrimination result is modified according -
to the state in the event-driven task model. This
method can be expected to achieve high discrimina~
tion performance based on the knowledge of the task,
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Figure 1: Structure of the proposed method.

even if the operator’s arm position is changed or the
discrimination of the LLGMN is ambxguous

2 Discrimination method based on the
event-driven task model

The structure of the proposed method is shown in
Fig. 1. This consists of the EMQG signal process-
ing part, the neural network part, the task model
part, and the motion determination part. First, in
the EMG signal processing part, the EMG signals
are preprocessed to extract the input pattern for the
neural network part. Then, the neural network part
outputs a posteriori probabilities of the operator’s in-
tended motion using LLGMN. The task model part
includes a Petri net, which describes the task de-
pendent knowledge, and outputs a modifying vector
based on the state in this task model. Finally, the de-
termination part determines the operator’s intended
motion based on the LLGMN's output and the mod-
ifying vector. The details of eath part are explained
in the following subsections.

2.1 EMG signal processing part

The EMG signals which are measured from L pairs
of electrodes are amplified and digitized by an A/D
converter. Then, they are rectified and filtered out
through the second order Butterworth filter (cut-off
frequency: f.[Hz]), and re-sampled with a f,[Hz]
sampling frequency. These signals are defined as
Ei{n) (I=1,:--,L), and the mean value of all chan-
nels is calculated as

Ea(n) = Z(Ez(n) - Ef t), (1)
i==1
where Ef* is the mean value of E;(n) while relaxing
the muscles. E,(n) indicates the muscular contrac-
tion level. For the EMQG pattern discrimination, the
feature vector z(n) = [z1(n), z2(n), ---, zz(n)]T
RY is calculated as

O : Place
== : Transition
o : Token
— 1 Arc

Figure 2: Task model répresented by a Petri net.

Ei(n) - Ef*

Ty (n) = L.Eg(ﬂ) * (2)

Also, in order to recognize the beginning and ending
of the operator’s motions, the square sum E,(n) is
calculated as

L
Ey(n) = _(Ei(n) - E{*)%. @3)
=1 .

2.2 Neural network part

This part uses the log-linearized Gaussian mixture
network (LLGMN) [10]. This network is a three-
layered feedforward network based on a log-linear
model and a Gaussian mixture model (GMM), and
can model a probability density function of each dis-
criminating class for the input patterns through the
learning.

LLGMN receives the n~th input vector x(n) =
[z1(n), za(n), ---, z(n)]* € RL from the
EMG signal processing part and outputs Y(n) = -
[Yi(n), Ya(n), -+, Yx(n)]T € RX from the third
layer. It should be noted that ¥i(n) corresponds to
a posteriori probability of the motion k which has
initiated by the human operator [11].

2.3 Task model part

The task model part includes a number of the
knowledge-based task models which are described by
Petri nets {12]. This part estimates the operator’s
task state using the history of the discrimination re-
sults of LLGMN, and outputs the modifying vector
according to the estimated state.

Let us imagine a “water-drinking” task. This
task can be composed of the three states and the
three motions: standby state — hand grasping —
grasping-a~cup state — wrist rotation — drinking
state -+ hand opening — standby state. The corre-
sponding task model can be described by using the
Petri net, which consists of the places, the transitions
and the arcs, that denote the operator’s task states,
motions and flow of tasks, respectively. Thus, the
task model N = (P, T; F, M) can be described using
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the sets of places P = {po,p1,-:*,pp}, transitions
T = {to,t1,---,tr}, arcs F C (PxT)U(T x P), and
initial markings M : P - NU {w} [12]. N and w
indicate the set of positive integer numbers and the
infinitely. T and P indicate the number of transi-

tions and places. In this paper, the initial marking

mg € M is settled on the place py which corresponds
to the standby state.

An example of the task model is shown in Fig. 2.
In this figure, the place with the token denotes the
standby state, and the branch subnets connecting
. this place represent the details of each task. For
example, at meals, the series of motions such as
“water-drinking” and “eating-with-chopsticks”, are
represented as the subnets. The tree structure of the
task model is suitable for re-composing the subnet
when the operator adds a new task.

In the task model part, according to the operator’s
task state, the modifying vector 7, is selected and
sent to the motion determination part:

MTm = [7"'-07 Tm1s s TmK, 7m(K+1)]T1 (4)
where m € {0,1,2,---, P} is the index of the place
in the model; Ym1, ---, Ymk indicate the modifying
parameters for the motion k (k = 1,2,---,K); and
Ym0 and Y (x+1) indicate the modifying parameters
for no motion and motion suspensions which are ex-

plained in the next subsection.

2.4 Motion determination part

In this part, the operator’s intended motion is de-
termined according to the outputs from the neural
network part, the task model part and the squared
sum E,(n) which is defined as Eq. (3). Here, the ad-
ditional two motions, such as no motion and motion
suspension, are defined.

The probability of no motion Yy(n) is defined using
the following membership function:

Yo(n) = == tan~ {a1 (By(m) — B)} 405, (5)

where E;(n) is the squared sum of the EMG signals
defined as Eq. (3), and aj, 8; are positive constants.
If the muscular contraction level E,(n) is close to 0,
Yo(n) becomes close to 1. On the contrary, if Ey(n)
increases, Yp(n) decreases (Fig. 3(a)).

The probability of motion suspension Y., (n) is de-
fined based on an entropy H(n):

Yicsa(n) = = tan~ {aa(H(n) - o)} +05,  (6)

K
H(n) = - Yi(n)log Yi(n), (7
k=1

where oy, B2 are positive constants. The entropy is
calculated using conditional a posteriori probabilities
Yi(n) (k =1,2,---,K) which are received from the
neural network part. If the entropy H(n) is close to
0, Yx+1(n) becomes close to 0. On the contrary, if
H(n) increases, this means that the network output
is ambiguous, and Y3 (n) is close to 1 (Fig. 3(b)).
The probability of the motion suspension can be re-
garded as the index, which indicates reliability of the
motion discrimination in the neural network part.

The proba.Bility Zi(n) (k = 0,1,--- , K, K +1) is
calculated using Yp(n), Yx41(n) and conditional a
posteriori probabilities Yz (n)(k=1,2,.--,K):

Zk(n) = (&)

Yi(n) - (k=0)
{ (1-Yo(n))(1 ~ Yx41(n))Yi(n) (k=1,..,K)
(1 = Y5(n))Yi(n) (k=K +1).

Finally, the probability Z;(n) is weighted by the
modifying vector v,

_ YmkZx (n)
Oxlm) = Y YmiZi(n) ®

and the operator’s intended motion, which corre-

sponds to the greatest element, is selected as the
determination result:

3 Experiments
3.1 Experimental system

We conducted the experiments using a human-
assisting manipulator system which was developed
by the authors [11]. In this system, the robotic ma-
nipulator (Move Master RM-501, Mitsubishi Elec-
tric Corp.) and the prosthetic forearm (Imasen lab.)
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[2] are used as the arm and end-effector parts, re-
spectively. The prosthetic forearm is driven by an
ultrasonic motor (SINSHEI Corp.) to reduce a mo-
tor noize. The joint angles of the prosthetic fore-
arm are controlled by the joint impedance control
method based on the motion determination result
and the muscular contraction level E,(n) [13]. This
method can realize smooth motions similar to that
of the human arm. The robotic manipylator is con-
trolled by the 3D position sensor (ISOTRACK II:
POLHEMUS Inc.). The joint angles of the arm part
are controlled by the PID control method accord-
ing to the operator’s wrist position measured by this
sensor. The correspondence of the movement of the
operator’s wrist joint with the end-effector part en-
ables the operator to control the manipulator sys-
tem intuitively. The prosthetic forearm has 3 d. o.
f. and six motions (hand grasping, hand opening,
pronation, supination, extension, flexion: K = §).
These motions are discriminated in the experiments.
The EMG signals are measured from six pairs of elec-
trodes (L = 6): Four pairs of electrodes are attached
to the forearm and two pairs at the upper arm. The
cut-off frequency of the Butterworth filter and the
re-sampling frequency in the EMG signal processing
part is settled as f, = 1.0[Hz] and f, = 27[Hz]. LL~-
GMN is well learned before the operation [10], [11],
[13].

3.2 Experimenta;« conditions

In the experiments, five subjects performed the ma-
nipulator control using the proposed method. Sub-
jects A, B had enough experience of EMG manipu-
lation, while Subjects C, D, E were not familiar with
EMG manipulation. Subjects were asked to perform
a “having-a-meal” task which composed of three sub-
tasks (pouring water into a cup from a bottle, drink-
ing a cup of water, spooning and eating soup). The
experimental setup is shown in Fig. 4. The subjects
were asked to perform the following motions:

Table 1: Places and trensitions.

Places Transitions
Po Standby to Opening =~
Py | Grasping a bottle || t; | Grasping in Q,
D2 Pouring t2 | Supinating in Q,
p3 | Graspingacup | ¢3 Graspin;gri; Qs
ps | Drinking water || t4 | Pronating in Q,
ps | Grasping a spoon || t5 | Grasping in Qs
D6 Spooning up ts | Supinating in Qs
_pr |  Eating soup ty | Pronating in Q4
The task of eating soup The task

Figure 5: Task model for having o meal.

(1) Grasping the bottle using the manipulator.

(2) Moving the bottle over the cup, and pouring
some water (supinating wrist joint).

(3) Putting the bottle on the table.

(4) Grasping the cup, and moving it near the
mouth,

(5) Drinking water (pronating wrist joint).
(6) Putting the cup on the table.

{7) Handing the spoon to the manipulator in front
of the subject’s chest. -

{(8) Moving the spoon over the soup plate.
(9) Spooning soup (supinating wrist joint).

(10) Moving spoon near the mouth, and eating soup
(pronating wrist joint).

(11) Handing the spoon to the subject in front of his
chest.
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The eight motions, eight states and the task model
are shown in Table 1 and Fig. 5. In this task, po-
sition information of the end-effector part was added
as the condition of each transition in the task model
to utilize the knowledge depending on the position.
For example, the system should know that the spoon-
ing task is expected when the manipulator moves
over the soup plate with spoon. Six regions were
defined, which were the sphere with the centers Q)
(i =1,2,---,6) and the radius r; (i = 1,2,---,6).
The centérs Q; of regions are shown in Fig. 4,
which are corresponding to the bottle (Q1), the re-
gion over the cup (Q2), the cup (Q3), the regions in
frorit of operator’s mouth (Q4) and chest (Qs), the
soup plate (Qs), respectively. The radius of each re-
gions were r; = 0.08[m], ro = 0.08]m], rs = 0.08[m],
r4 = 0.08[m], s = 0.08[m], r¢ = 0.08{m]. The mod-
ifying vectors were defined to give a priority to the
motions, e.g., the grasping and supination motions
for using the bottle task, the grasping and prona-
tion motions for using the cup task, the grasping,
pronation and supination motions for spooning task.
These parameters were chosen through the trial and
error.

3.3 Experimental results

An example of the measured signals during the ma-
nipulation is shown in Fig. 6. This figure shows: the
EMG signals, the estimated muscle force E,(n), the
estimated motions with the task model and without
the task model, the task states estimated in the task
model part, and the joint angles of the prosthetic
hand. In the results without the task model, incor-
rect discrimination was observed during the manip-
ulation of the bottle and the cup. On the contrary,
using the task model, incorrect discrimination de-
creased and robustness of the motion discrimination
was improved.

Table 2 shows the mean values and the standard de-
viations of the discrimination results. Each subject
performed the having-a-meal task for five times. Ta-
ble 2(a) shows the results with the task model, and
(b) the one without the task model. If Op(n) < 0.4,
the system recognized that the motion had occurred.
On the contrary, if Op(n) > 0.4, the system rec-
ognized no motion. The discrimination rates were
calculated during the manipulation except for the
standby state. The inappropriate motions (e.g.,
hand opening motion when the operator was grasp-
ing a bottle) were counted as the incorrect discrim-
ination. It can be seen that the proposed method
can achieve high discrimination performance. Effect
of the task model is confirmed during the grasping a
cup or a bottle task. These tasks were required the
posture changes of the subject’s upper limb.
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Figure 6: An example of the EMG pattern discrim-
ination for a having-a-meal task (Subject A)

4 - Conclusion

This paper proposed a new myoelectric control
method for human assisting devices such as pros-
thetic hands and manipulators. This method com-
bined the task model with the neural network to im-
prove reliability of the prosthetic control. In this
method, the discrimination results of the neural net~
work are modified using the knowledge of the task
model. The high discrimination performance can be
expected for the unstable EMG patterns caused by
the changes of the operator’s posture and the envi-
ronments. The results obtained in this paper were
summarized as follows:

(1) The tasks which were very difficult to perform
using the previous method, such as a “Putting-
a~building block” task and a “having-a meal”
task, can be successfully performed using the
proposed method. ‘

(2) The discrimination accuracy was improved us-
ing the modifying vectors in the task model part.

(3) The manipulation using the proposed method

1449



Table 2: Classification rates for motions included in the task

{a) The proposed method using the task model

___ Motions Subject A (%) || Subject B (%) ]| Subject C (%) || Subject D (%) || Subject E (%)
—'C—}raspping a bottle 98.8 +.0.8 921+ 7.3 89.8 + 10.2 94.0 £ 3.7 96.0 £ 3.7
Pou;'ing 994 + 04 91.9%£ 7.9 970+ 3.6 97.0 £ 2.8 96.4 + 42
Graspping a cup 92.6 £ 8.6 972 £ 2.5 945 £ 6.7 80.1 £ 12.7 921 % 70
Drinking water 911+ 6.5 95.4 + 4.2 963+ 4.8 811+ 86 948+ 87
Graspping' a spoon 97.1+ 2.6 924 + 115 955 + 3.6 962+ 3.2 86.5 &+ 5.9
SpooAm?ng up 979+ 1.8 96.7+ 14 989+ 1.2 97.7+ 1.7 906 £ 4.3
Eating soup 95.5 + 3.5 926 + 4.7 98.7+ 1.0 886+ 9.1 981+ 16
_ (b) The previous method not using the task model
Motions Subject A (%) ][ Subject B (%) || Subject C (%) || Subject D (%) || Subject E (%)
Graspping a bottle 51.3 + 16.6 88.2 + 8.6 819+ 98 744 £ 13.7 93.1+ 3.5
Pouring 943+ 1.9 83.8 + 10.5 90.8 & 9.8 780+ 5.0 54.7 £ 17.3
Graspping a cup | 474 = 22.3 037+ 3.8 854 + 0.2 645 + 10.2 885 + 6.0
Drinking water 793+ 4.0 81.3 £ 124 66.0 + 24.2 613+ 9.8 83.9 £ 229
Graspping a spoon || 50.9 = 11.2 || 87.6 + 11.2 803+ 0.6 60.5  14.6 831+ 60
Spooning up 872+ 6.2 68.2 + 15.2 943 £+ 4.3 645+ 8.2 59.4 + 9.7
HEating soup 73.8 £ 11.7 75.7 + 9.3 77.1 £ 13.0 76.4 + 16.8 78.9 + 29.2

does not need excessive experience and concen-
tration.

In the future research, we would like to develop a
method to adjust the parameters automatically in
the task model part by learning, and extend the pro-
posed skill assist method to a dual-arm manipulator
system.

A part of this work was supported by Industrial
Technology Development Organization (NEDO) of
Japan.
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