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ABSTRACT
This paper proposes a new discrimination method of time
series EEG signals using the Recurrent Log-Linearized
Gaussian Mixture Network (R-LLGMN). The structure of
R-LLGMN is based on a hidden Markov model, which
has been well developed in the area of speech recognition.
The weight coefficients in the network can be learned us-
ing the back-propagation through time algorithm. In order
to examine the EEG discrimination ability of the proposed
~ method, comparison experiments were conducted using the
several discrimination methods, such as the statistical neu-
ral networks, recurrent neural filters, and hidden Markov
models. It can be seen from the experimental results that
R-LLGMN can achieve high discrimination performance.

KEY WORDS
Neural network, Pattern discrimination, EEG, Hidden
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1 Introduction

The electroencephalogram (EEG) includes very important
information for a clinical diagnosis of neurological disor-
ders or a mental disability, so that the EEG analysis is often
utilized for medical examination in a clinic. On the other
hand, this signal can be expected to be used as a control
signal for a new type of a man-machine interface because
the signal pattern changes depending on the internal or
external factors such as intentions of movements, photic
and auditory stimulation. = This paper proposes a new
discrimination method of EEG signals using a recurrent
neural network.

Up to the present, several methods for the EEG pat-
tern discrimination have been proposed. For example,
Peltoranta er al. [1] used the self-organizing feature map,
the learning vector quantizer (LVQ), the K-mean and
neural networks (NNs) [11, and conducted the comparison
experiments. The discrimination method using a NN was
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especially reported by Pritchard ef al. [2], Pfurtscheller
et al. [3][4] and Selvan and Srinivasan [5]. Pritchard ef
al. [2] attempted to classify Alzheimer's disease from the
EEG signals using the Back Propagation Neural network
(BPN). Pfurtscheller er al. [3][4] utilized the EEG as the
brain computer interface (BCI). They classified the motion
of the left and the right arms using the BPN with the LVQ.
Selvan and Srinivasan [5] proposed a recurrent neural
network including an adaptive filter, where they trained
the network using real time recurrent learning. They also
proposed a method to remove the ocular artifacts from the
EEG signals.

While the BPN was utilized in most of the previous
studies, Tsuji er al. proposed the log-linearized Gaussian
mixture network (LLGMN) [6] based on a log-linear model
and a Gaussian mixture model. LEGMN can acquire the
log-linearized Gaussian mixture model through learning
and calculate the a posteriori probability. Moreover, in
order to cope with time-varying characteristics of the EEG
signals, they combined this network with a Neural Filter
(NF) [7]. Although this method attained relatively high
classification rates, it was necessary to train two different
types of NNs, that is, LLGMN and NF, therefore the
learning procedure became quite complicated and general
optimization was almost impossible.

In this paper, a novel NN, a Recurrent Log-Linearized
Ganssian Mixture Network (R-LLGMN) is proposed by
introducing the recurrent connection into LLGMN to clas-
sify a time sequence of EEG signals. Since this network
is composed of a feedforward NN including a Gaussian
mixture model and feedback connections from output to
input, the pattern discrimination and the filtering process
are unified together and realized in a single network.
R-LLGMN includes a hidden Markov model (HMM) [8]
in its structure and can regulate the weight coefficients
by the back-propagation through time (BPTT) algorithm
[9]. R-LLGMN ensures the pattem discrimination and the
filtering process to be achieved at the same time and can



attain high discrimination ability.

2 Recurrent Log-Linearized Gaussian Mix-
ture Network

The structure of a proposed network is shown in Fig
1. This network is a five-layer recurrent NN with a
feedback connection between the fourth layer and the
.third layer. First of all, the input vector x{t) =
[z1(t),z2(2), -, za(t)]T € R4t = 1,....T) is pre-
processed with a non-linear computation and converted
into the modified vector X € RE:

[1’ x(t)T’ il(t)zs ml(t)xZ(t)? Y
z1(t)z4(t), 72 (t)?: z2(t)zs(t),
co 2a(B)za(t), -5 a8

X(t) =

D

The first layer consists of H units corresponding to
the dimension of X(the dimension H is determined as
H = 1+ d{d + 3)/2) and the identity function is used
for activation of each unit. The input ) and the output
(M) Oy, of the hth unit in the first layer are defined as

M1, (2) = Xn(2), @

WO (t) = V1,(0). 3)

Unit{c,k,k',m} (¢ = 1,---,C ; b}k = 1,... K,
sm=1,..., M) in the second layer receives the output
of the first layer weighted by the coefficient w§, y .,, »- The
relationship between the input and the output in the second
layer is defined as

H
OL () = > VORI s
ha=1

“)

®0f jm(t) =em (DL m(®), O

where C is the number of classes, K, is the number
of states, M, x is the number of the components of the
Gaussian mixture distribution corresponding to the class ¢
and the state k [6].

The input into a unit {c, k, %’} in the third layer inte-
grates the outputs of units {¢, k, k',m} (m=1,..., Mcx)
in the second layer. The output in the third layer is that
input weighted by the previous output in the fourth layer.
The relationship in the third layer is defined as
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M
<3)Ic:,k(t) = Z (2)02',k,m{t)’ (6)

ma=1

O0L k(1) = DOp (¢ - NOIE 4 (8), )
where WOZ,(0) = 1.0 for the initial state.

The fourth layer receives the integrated outputs of
units {¢, k, &'} in the third layer. The relationship in the
fourth layer is defined as

Ke
@I = > ®og (1), ®)
k/=1
Wrgt)

@og(t) =
k K. :
ZS::I k=1 (4)1}:: (t)

9

At last, a unit ¢ in the fifth layer integrates the out-
puts of K units {¢, k} (k = 1,..., K.) in the fourth layer.
The relationship in the fifth layer is defined as

K.

®re(ty =Y WOg(e), (10)
k=1

BYoc(t) = B (1), an

The output of the network $)O¢(t) corresponds to the a
posteriori probability of the input vector x() for the class
¢, while only the weight coefficients w§, , ., , between
the first layer and the second layer are adjusted by learning.

The network is learned with the teacher vector
T = (Tf“)’ .. .,Tc(“)’ s ,Tén))T(n = 1,...,N)
for the nth input stream x()™ at a time T. If the input
stream x(t)™ is set for the class &, then Té") = 1,
and T = 0 for all the other classes. R-LLGMN is
trained with the given N vector streams which divided
into L subsets, while each set consists of C' stream classes
(N = L x C). In this paper an energy function J for the
network is defined as

N N C )
J = Z Jp = — Z Z’I;(") log Oy, (2
nx=l

nz=l cx=l

where G)O°(T)") means the last output (¢ = T for
stream x(t) ™). The learning process is to minimize J, that
is, to maximize the likelihood that each teacher vector T¢)
is obtained for the input vector x(¢)™.
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Figure 1. The structure of R-LLGMN

Figure 2. A dynamic probabilistic model with C classes and K, states

3 Relation between R-LLGMN and Hidden
Markov Model

This section proves that R-LLGMN can be interpreted as
a hidden Markov Neural Network based on a continuous
density hidden Markov model [10}{11].

Let us consider a dynamic model [8], as shown in Fig.
2, where there are C classes in this model and each class
c{c € {1,...,C}) is composed of K, states. Suppose
that, for the given time series X = x(1),%(2),---,x(T)
(x(t) € R?), at any time x(t) must occur from one state k
of class c in the model, a posteriori probability for class c,
P(c|X), is derived as -

Kc

P(X) = Y Plek|X) a3
k=1

_ KZ af(T) 1

C K. '
k=1 Ec’:l Zk’zl ai,’ (T)
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K,
af(t) = af(t— D1 kbE(x(®) (> 1), (A5)
k=1
ag(1) = wEbE(x(1)), 6)

where ~f, , is the probability of the state changing from

k' to k in class ¢, and b§(x(2)) is defined as a posteriori

probability for state k in class ¢ corresponding to x(t).
Also the a priori probability #{ equals to P(c, k)l,—o-

When the a posteriori probability of state % in class
¢ corresponding to z(¢), b(x(t)), is approximated by
summing up M. components of Gaussian mixture
distribution [6]{12], 7§ b%(x(¢)) in the right side of (15)
can be derived with the form '

7}%’,]:5;(3{“)) =
Me,x 4
Z 713’,k7'c,k,m g(x(t); p,(c’kvm)’ E(c,k,m))
=]

t>1), aN



where r¢ k,m, plekm) ¢ d and nlekm) ¢ Rdxd gandg
for the mixing proportion, the mean vector and the covari-
ance matrix of each component {¢, k, m}, respectively. Us-
ing the mean vector u(&5™) = (p(c’k ™o u("’k mHT
and the inverse of the covariance matrix T(eEm~1 =

[sS %m)], the right side of (17) can be rewritten as

T ek mg(X(2); w5, BERmY)

= 9 pTekm(2m) " lekm)

i
X exp -»222(2 Si1)s (Ck’m)x_,mg.

J=1 =1
d

+ Zzs(c, ,m) (c k m)

=1 I=1
d d

— _;. T3 sl ki) (ekm)

=1 =1

(18)

where 4;; is the Kronecker delta: §;; = 1 wheni = j
and &;; = 0 when ¢ # j, and | - | stands for the matrix
determinant. Then, taking logarithm of (18), we get

M.k
Yo b)) = Y &k m(®), 19)
me=]
gg’,k,m(t)
N
= log 7£',k7'c,k,m9 (X(t); p(c,k,m), z(c,k,m))
= Bism X, (20)
where X(t) € R¥ and 8% ;. ., € R¥ are defined as
X(t) = (11 x(t)Ts 2(3)12, x(t);x(t)z, e !x(thx(t)ds
z(t)2®, 2(t)2z(t)s, - - -, (t)22(t)a,
o, z(t)d)T, 1)
Bikm = (ﬁc, A mgz s(c,k m) (c km) L.
. jm= ]
Z s(c, ,m) (c,k ™). 1 (c,k m.)
J=1
- sl(g”"’"), S sf;”""‘), _—
_..1.(2 - &; )s€°vk’m>’ .-,
1
~5%58 ’“’) : 22)
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ﬁk’ Jom

d d
1 .
= _2_ 2 :E :S zc:k,m)ug‘c,ic,m)pl(c,ktm)

gu==1 f==l

T

d
—— - — (Cvkrm)
3 {og 27 5 Iog |z |

+logrek,m + log Ve k- (23)

Equation (21) describes the nonlinear pre-process for
the first layer in R-LLGMN (see (1)), and &5 ; .., can be
expressed as the product of the coefficient vector B, ,

and the modified input vector X € R¥. Hence, the mode} ‘
can be expressed as the neural network structure by using
B k.m as the weight coefficients.

However, the definition of B ;. (22) indicates that
most elements of B}, 4 ,, are constrained by the statistical

properties of the parameter 5\<*™, and these constraints
imay cause a difficult problem in the learning procedure:
how to satisfy the constraints during the learning of the
weight coefficients. Therefore the new variable Y |
and the new coefficient vector W, ; ., are introduced to
get rid of the constraints:

k,m

Yig,k,m(t) = Eﬁ',k,m(t) - §I€'c,Kc,Mc,x (t)

= (5;"k’m - 6§c »Kc,Mc,x)T X(’:)

= Wk m X(t), 24)

where W r_ arc o = 0 by definition.

This pew parameter wf, . . has no constraints and
is used as the weight coefficient in this paper. Sub-
sequently, equation (15) can be rewritten in the form
as

af(t) = Zak&t—lm ACO)
.
K:l
= > apt-1 e [¥S )]
kfx=1
@>1). (5

Comparing (13)-(16),(21),(24),(25) in HMM with (1)-(11)
in R-LLGMN, we can see both of them are equivalent.
It means that R-LLGMN regards the coefficient vector
W & 8 3 weight coefficient vector and modifies them
50 as to optimize an energy function via learning with the
BPTT.



4 EEG Pattern Discrimination

4.1 Experimental Conditions

The EEG.signals measured from the electrodes were
digitized by an A/D converter after they were amplified
and filtered out through low-cut (3 Hz) and high-cut (40
Hz) analogue filters. The noise in the EEG signals can be
removed significantly by the bipolar derivation between
the two electrodes located at Fpl and Fp2.

Subjects were seated on the chair, and a flash light
(xenon, illuminating power: 0.176 [J], frequency of
flashing: 4 [Hz]) was set at the distance of 50 cm apart
from their eyes. First, the EEG signals were measured
during photic stimulation by opening/closing eyes and an
artificial light (60 seconds for each). The measured signals
were used as learning data. Then, photic stimulation was
given alternatively according to the pseudo-random series
for 420 seconds, and the EEG signals were measured for
the discrimination data.

The electroencephalograph used in the experiments
has one pair of the electrodes, so that the spatial informa-
tion of the EEG signals on the location of the electrodes
cannot be utilized. The frequency characteristics of the
EEG signals, however, significantly changes depending on
the eye states. Therefore, the spectral information of the
measured EEG signals were used as follows. The power
spectral density function of the measured EEG signal was
estimated using the FFT for every 128 sampled data. The
function was divided into several ranges (from 0~35 Hz).
The frequency bands of this range were determined based
on the clinical use of the brain wave (delta, theta, alpha,
beta). Time series of the mean values of the power spectral
density function within each frequency ranges were calcu-
lated and normalized between [0, 1] in each range. Thus,
the d-dimensional data were obtained and used as the input
vector to the networks zi1,23,...,24. However, there is
almost no influence of the dimension number d [6], the
experimental result with the 2-dimensional data (d = 2) is
shown (corresponding to frequency range 0 ~ 8,9 ~ 35
Hzp. o

In the experiments, four discrimination methods were
used for comparison, such as LLGMN, LLGMN with
NF, HMM, and R-LLGMN. LLGMN is a feedforward
type probabilistic neural network which is based on the
log-linearized Gaussian mixture model [6]. This network
corresponds to the special case of R-LLGMN when the
length of time sedes, T, is 1, and K, = 1 for each unit in
the 5th layer. LLGMN used M; = M, = 1 components,
and L = 56 training data for each class. As for LLGMN
with NF, there were 8 units in NF and 168 data were used
for the training. In NF, fully interconnected units in the
second layer keep the internal representation, so that the
time history of the input data can be considered [7]. The
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Figure 3. An example of the discrimination results for three
types of photic stimulation (subject A)

\history of the input data was considered back to 5 steps. NF

works like a filter and makes the a posteriori probability
as the output from LLGMN to be smoother. On the other
hand, in R-LLGMN, the parameters of the network were
setas: Ky = Ko = 1,M1,1 == Mz,l =1T=5L=>5
In HMM, the number of states K; = K5 = 1, the number
of training data L = 35, the length of the training data
T = b were used, and the number of quantization level
QL varied from 2 to 4. :

4.2 Discrimination Result

Figure 3 shows an example of the discrimination result
of subject A. In the figure, the timing of switching photic
stimulation, the input EEG signals correspond to two
frequency bands, the output of LLGMN, LLGMN with
NF and R-LLGMN, and the discrimination results of
the R-LLGMN are shown. The output of R-LLGMN is
smooth and stable. R-LLGMN performs relatively high
discrimination rate of 87.4% in this experiments.

Table 1 shows discrimination results for five subjects.
The mean values and the standard deviations of the
discrimination rate were computed for 10 kinds of initial



Table 1. discrimination results for three types of photic
stimulation

LLGMN HMM ]
Type of the methods | LLGMN | LEENR t—0n e o RLLOMN
A LCR I 158 394 743 B85 528 YR}
(mate) 57} o 21 Y 00 50 1
Subjec1B | CR | B3 S16 79,5 5%, 04 957
traale) D o 03 Y 0. ; 00
SebearC . L CR |49 78.3 . 9.5 [ [T
) 4.8 33 5 Y 0. 4.
SbjciD | CR |65 4.4 724 82 76, %62
fomale) ) - I ; [X 2 ;
Subjee £ | CR | 712 57, %62 6. [ 877
frmeile) SD K 09 Y 0o X} Y
R 1 3. 3.0 7. 5 ¥6.3 [
Toul D T il 0.0 00 0.0 [

CR : Clssification rate [%], SD: Sumdard deviation [%]. QL : Number of quantizatio Jevel

weights, which were randomly chosen. According to the
experimental results, except for LLGMN, all the other
methods attained high discrimination rates. Speaking
in general, LLGMN based on a static Gaussian mixmre
model does not fit for discrimination of the dynamic
signal like the EEG, while the other methods contains the
dynamic statistical model.

5 Conclusions

In this paper, the new recurrent neural network, R-
LLGMN, has been proposed to perform a pattern discrim-
ination for a time series of EEG signals. R-LLGMN is a
recurrent NN including a Gaussian mixture model and a
feedback connection from output to input. Therefore, this
network ensures the pattern discrimination and the filtering
process to be achieved at the same time.

The discrimination experiments for EEG signals un-
der the photic stimulation have been carried out to examine
the discrimination capability of the proposed network.
The results of discrimination experiments showed that
R-LLGMN performs the filtering process as well as
the pattern discrimination together in the same network
architecture and can realize a relatively high discrimination
rate,

Future research will be directed toward improving the

learning algorithm for the application of the discrimination
of various bioelectric signals.
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